

LAVORI PER LA MESSA IN SICUREZZA DI STRADE DISSESTATE

LOCALITA' SALGARI

COMMITTENTE	Amministrazione Comunale di San Giovanni Ilarione	PROGETTISTA	ing. MARCO MENEGHINI
	Piazza A.Moro, 5 - 37035 S.Giovanni Ilarione (VR)		Via degli Alpini, 12 - 37040 Arcole (VR) e-mail: marco.meneghini2@ingpec.eu - Tel: 328 4925476
			DATA Connaio 2019 DD 0 05770

CAPITOLATO SPECIALE D'APPALTO

PARTE SECONDA:
PRESCRIZIONI TECNICHE

Gennaio 2018	PROGETTO
A	FATTIBILITA' TECNICA
	ED ECONOMICA
	□ DEFINITIVO
	Gennaio 2018

PARTE SECONDA PRESCRIZIONI TECNICHE

CAPC	I – QUALITA' E PROVENIENZA DEI MATERIALI	
Art.1	Condizioni generali d'accettazione – Prove di controllo.	pag. 2
Art.2	Caratteristiche dei vari materiali.	pag. 2
CAPO	II – NORME PER LA ESECUZIONE DEI LAVORI	
Art.3	Movimenti di terra.	pag. 9
Art.4	Demolizioni.	pag. 33
Art.5	Murature.	pag. 35
Art.6	Acciai.	pag. 41
Art.7	Calcestruzzi.	pag. 46
Art.8	Leganti sintetici	pag. 66
Art.9	Pavimentazioni stradali.	pag. 68
Art.10	Opere di difesa	pag.104
Art.11	Segnaletica orizzontale, verticale e complementare	pag.113
Art.12	Gabbioni	pag.154
Art.13	Dispositivo di drenaggio	pag.155

CAPO I - QUALITA' E PROVENIENZA DEI MATERIALI –

Art. 1 - Condizioni generali d'accettazione – Prove di controllo

I materiali da impiegare per i lavori di cui all'appalto dovranno corrispondere, come caratteristiche, a quanto stabilito nelle leggi e regolamenti ufficiali vigenti in materia e nel successivo art. 2; in mancanza di particolari prescrizioni dovranno essere delle migliori qualità esistenti in commercio.

Si precisa che le indicazioni normative riportate nelle presenti norme si intendono sempre riferentesi alla versione più recente delle stesse, comprensiva di eventuali atti di modificazione, integrazione e/o sostituzione.

I materiali proverranno da località o fabbriche che l'Appaltatore riterrà di sua convenienza, purché corrispondano ai requisiti di cui sopra.

In ogni caso i materiali, prima della posa in opera, dovranno essere riconosciuti idonei ed accettati dalla Direzione Lavori; l'accettazione dei materiali non è comunque definitiva se non dopo che siano stati posti in opera e l'opera sia stata collaudata.

Quando la Direzione Lavori abbia rifiutata una qualsiasi provvista come non atta all'impiego, l'Appaltatore dovrà sostituirla con altra che corrisponda alle caratteristiche volute; i materiali rifiutati dovranno essere allontanati immediatamente dal cantiere a cura e spese dello stesso Appaltatore.

Malgrado l'accettazione dei materiali da parte della Direzione Lavori, l'Appaltatore resta totalmente responsabile della riuscita delle opere anche per quanto può dipendere dai materiali stessi.

L'Appaltatore sarà obbligato a prestarsi in ogni tempo alle prove dei materiali impiegati o da impiegare, anche se non incluse nelle presenti Norme, purché facenti riferimento ad una normativa in uso, sottostando a tutte le spese necessarie per il prelievo, la formazione e l'invio dei campioni ai Laboratori indicati dalla Direzione Lavori; fatte salve diverse prescrizioni contenute negli articoli specifici delle Norme, il costo diretto delle prove di laboratorio verrà invece sostenuto in parti uguali tra Stazione Appaltante e Appaltatore.

I campioni verranno prelevati in contraddittorio; degli stessi potrà essere ordinata la conservazione nei locali indicati dalla Direzione Lavori, previa apposizione di sigilli e firme del Direttore Lavori e dell'Appaltatore e nei modi più adatti a garantirne la autenticità e la conservazione.

Le diverse prove ed esami sui campioni verranno effettuate presso i laboratori ufficiali individuati negli elenchi elaborati in conformità alla vigente normativa indicati univocamente dalla Stazione Appaltante.

Art.2 - Caratteristiche dei vari materiali

I materiali da impiegare nei lavori dovranno avere i requisiti fissati qui di seguito e negli articoli successivi; dovranno pertanto essere forniti di una idonea certificazione d'origine, che attesti la conformità delle proprie caratteristiche alle specifiche richieste nelle presenti Norme.

Nel caso di mancanza di tale certificazione, il materiale non verrà ritenuto idoneo all'impiego ed immediatamente allontanato dal cantiere, a totale cura e spese dell'Appaltatore.

In caso di difformità con quanto fissato nel presente articolo, varrà quanto prescritto dalla Norma specifica.

- **A)** Acqua: dovrà essere dolce, limpida, non inquinata da materie organiche o comunque dannose all'uso cui l'acqua medesima è destinata e rispondere ai requisiti stabiliti dalle norme tecniche emanate in applicazione dell'art. 21 della Legge num. 1086/1971 s.m.i.
- B) Leganti idraulici Calci aeree Pozzolane: dovranno corrispondere alle prescrizioni:
- della legge num. 595/1965;
- delle "Norme sui requisiti di accettazione e modalità di prova dei leganti idraulici" D.M. 14-1-1966, modificato con D.M. 3/06/68, D.M. 31/08/1972, D.M. 13/09/93 s.m.i;

- delle "Norme per l'accettazione delle calci aeree" R.D. num. 2231/1939 s.m.i;
- delle "Norme per l'accettazione delle pozzolane e dei materiali a comportamento pozzolanico", R.D. num. 2230/1939;

I materiali dovranno trovarsi, al momento dell'uso in perfetto stato di conservazione.

Il loro impiego nella preparazione di malte e conglomerati cementizi dovrà avvenire con l'osservanza delle migliori regole d'arte.

C) Ghiaie - Ghiaietti - Pietrischi - Pietrischetti - Sabbie per opere murarie: dovranno corrispondere ai requisiti stabiliti dalle Norme Tecniche emanate in applicazione dell'art. 21 della Legge num. 1086/1971 s.m.i.

Le dimensioni massime degli aggregati costituenti la miscela dovranno essere compatibili con quanto prescritto nel D.M. 09/01/1996 s.m.i e in ogni caso le maggiori fra quelle previste come compatibili per la struttura a cui il conglomerato cementizio è destinato.

Per le caratteristiche di forma valgono le prescrizioni fissate dall'art. 2 delle Norme citate nel seguente comma D).

Si tratta di materiali da impiegarsi nella formazione dei conglomerati cementizi, escluse le pavimentazioni

- **D)** Pietrischi Pietrischetti Graniglie Sabbie Additivi per pavimentazioni: dovranno soddisfare ai requisiti stabiliti nelle corrispondenti "Norme per l'accettazione dei pietrischi, dei pietrischetti, delle graniglie, delle sabbie e degli additivi per costruzioni stradali" del C.NUM.R. (Fascicolo num. 4, Ed. 1953 ed eventuali successive modificazioni ed integrazioni) ed essere rispondenti alle specifiche riportate nelle rispettive norme di esecuzione lavori.
- **E) Ghiaie Ghiaietti per pavimentazioni:** dovranno corrispondere, come pezzatura e caratteristiche, ai requisiti stabiliti nella "Tabella UNI 2710 Ed. giugno 1945" ed eventuali successive modificazioni ed integrazioni.

Dovranno essere costituiti da elementi sani e tenaci, privi di elementi alterati, essere puliti e praticamente esenti da materie eterogenee, non presentare perdita di peso, per decantazione in acqua, superiore al 2%.

F) Pietre naturali: le pietre da impiegare nelle murature, nei drenaggi, nelle gabbionate, etc. dovranno essere sostanzialmente compatte ed uniformi, sane e di buona resistenza alla compressione, prive di parti alterate.

Esse dovranno corrispondere ai requisiti d'accettazione stabiliti nel R.D. num. 2232/1939 "Norme per l'accettazione delle pietre naturali da costruzione".

Dovranno avere forme regolari e dimensioni adatte al loro particolare impiego.

Le pietre grezze per murature frontali non dovranno presentare screpolature e peli: dovranno essere sgrossate col martello ed anche con la punta, in modo da togliere le scabrosità più sentite nelle facce viste e nei piani di contatto così da permettere lo stabile assestamento su letti orizzontali e in perfetto allineamento.

G) Pietre da taglio: proverranno dalle cave che saranno accettate dalla Direzione Lavori.

Esse dovranno essere sostanzialmente uniformi e compatte, sane e tenaci, senza parti alterate, vene, peli od altri difetti, senza immasticature o tasselli.

Esse dovranno corrispondere ai requisiti di accettazione stabiliti dal R.D. num. 2232/1939.

Le lavorazioni che potranno essere adottate per le pietre da taglio saranno le seguenti:

- a) a grana grossa
- b) a grana ordinaria
- c) a grana mezza fina
- d) a grana fina

Quando anche si tratti di facce semplicemente abbozzate, esse dovranno venire lavorate sotto regolo in modo da non presentare incavi o sporgenze maggiori di 2 cm rispetto al piano medio; le pietre lavorate a punta grossa non presenteranno irregolarità maggiori di 1 cm.

Per le pietre lavorate a punta mezzana od a punta fina, i letti di posa saranno lavorati a perfetto piano, e le facce dovranno avere gli spigoli vivi e ben rifilati in modo che le connessure non eccedano i 5 mm.

Dove sia prescritta la lavorazione a martellina, le superfici e gli spigoli dovranno essere lavorati in modo che le commessure non eccedono i 3 mm.

Non saranno tollerate né smussature negli spigoli, né cavità nelle facce, né masticature o rattoppi.

H) Materiali laterizi: dovranno corrispondere ai requisiti d'accettazione stabiliti con R.D. num. 2232/1939 "Norme per l'accettazione dei materiali laterizi" od alle Norme UNI 5628-65, UNI 1607, UNI 5629-65, UNI 5630-65, UNI 5632-65.

I mattoni dovranno essere ben cotti, di forma regolare, con gli spigoli ben profilati e dritti; alla frattura dovranno presentare struttura fine ed uniforme ed essere senza calcinaroli e impurità.

- I) Argilla espansa: dovrà essere ottenuta mediante clinkerizzazione in forni rotanti ad una temperatura non inferiore a 1200 °C e peso in mucchio 320÷630 kg/mc a seconda della granulometria.
- **J**) **Blocchi prefabbricati per vibro-compressione:** saranno confezionati con inerti di buona qualità e dosaggi non inferiori a 200 kg di cemento, di tipo IV 42.5 o 42.5R, per metro cubo di impasto.

La resistenza a rottura degli elementi dovrà essere:

- 8 MPa per blocchi prefabbricati con impiego di ghiaietto e pietrisco;
- 3 MPa per blocchi prefabbricati con impiego di argilla espansa.

La superficie delle costole dovrà essere almeno pari, nel caso di strutture non portanti, al 40%; nel caso di strutture portanti al 65% della superficie apparente del piano di posa del blocco.

K) Blocchi prefabbricati di cemento e argilla espansa faccia-vista: saranno prodotti con inerti di buona qualità e dosaggi non inferiori a 200 kg di cemento, di tipo IV 42.5 o 42.5R, per metro cubo di impasto.

Saranno confezionati con conglomerato cementizio a struttura chiusa; la curva granulometrica varierà da 0.5÷4 mm; la densità da 1.200÷1.600 kg/mc.

Una varietà dei blocchi faccia vista è costituita dagli «splittati» ottenuti a spacco da un blocco doppio e possono essere a paramento normale o scanalato.

L) Materiali ferrosi: saranno esenti da scorie, soffiature, saldature e da qualsiasi altro difetto. Gli acciai per c.a., c.a.p. e carpenteria metallica dovranno soddisfare ai requisiti stabiliti dalle Norme Tecniche emanate in applicazione dell'art. 21 della Legge num. 1086/1971 s.m.i.

Il lamierino di ferro per formazione di guaine per armature per c.a.p. dovrà essere del tipo laminato a freddo, di qualità extra dolce ed avrà spessore di 0.2 mm.

I bulloni normali saranno conformi per le caratteristiche dimensionali alle norme UNI 5727-65 e UNI 5593; quelli ad alta resistenza devono appartenere alle classi delle norme UNI 3740-65.

I tubi in acciaio senza saldatura, per costruzioni meccaniche, dovranno soddisfare la norma UNI 7729 ed essere del tipo Fe 510.

M) **Acciaio inossidabile:** dovrà presentare elevata resistenza alla corrosione ed al calore e rispondere, per composizione chimica, caratteristiche e prescrizioni generali, alla norma UNI 6900-71. Le lamiere in acciaio inox saranno laminate a freddo a norma UNI 8317.

La designazione degli acciai è fatta per composizione chimica, dove «x» sta per «acciaio legato», il primo numero indica la percentuale di carbonio moltiplicato per 100 ed i numeri finali indicano i

tenori degli elementi di lega in %.

Oltre alla classificazione UNI verrà abitualmente usata anche la classificazione AISI (American Iron and Steel Institute).

N) Acciaio zincato: profilati, lamiere e tubi in acciaio, di qualsiasi sezione, spessore o diametro, tanto in elementi singoli quanto assemblati in strutture composte, dovranno essere zincati per immersione in zinco fuso, nel rispetto delle prescrizioni della norma di unificazione Progetto SS UNI E 14.07.000 (rivestimenti metallici protettivi applicati a caldo - rivestimenti di zinco ottenuti per immersione su oggetti diversi, fabbricati in materiale ferroso).

Per tutti i manufatti in lamiera zincata quali coperture, condotti, canali di gronda, converse, scossaline, compluvi, infissi, serrande, serbatoi per acqua e simili, se non altrimenti disposto dovranno essere impiegate lamiere zincate secondo il procedimento Sendzimir.

Lo strato di zincatura, inteso come massa di zinco, espressa in grammi al metro quadrato, presente complessivamente su ciascuna faccia della lamiera, se non diversamente specificato, non dovrà essere inferiore a:

- 190 g/mq per zincatura normale
- 300 g/mq per zincatura pesante.
- **O) Alluminio e leghe leggere:** per laminati, trafilati o sagomati non estrusi dovrà essere impiegato alluminio primario di cui alla norma UNI 4507 «Alluminio primario ALP 99.5 da lavorazione plastica».

Leghe leggere da lavorazione plastica resistenti alla corrosione dovranno corrispondere alle norme UNI 3569-66 o UNI 3571.

P) Alluminio anodizzato: dovrà risultare conforme alla norma UNI 4522-66 «Rivestimenti per ossidazione anodica dell'alluminio e sue leghe. Classificazione, caratteristiche e collaudo».

Gli strati normalizzati di ossido anodico saranno definiti mediante una sigla (OTO, BRI, ARP, ARC, ARS, IND, VET rispettivamente per strato: ottico, brillante, architettonico lucido, architettonico spazzolato, architettonico satinato chimicamente, industriale grezzo, vetroso), un numero che ne indica la classe di spessore e l'eventuale indicazione della colorazione.

Per gli strati architettonici la norma prevede quattro classi di spessore:

- Classe 5: spessore strato minum. 5 µml
- Classe 10: spessore strato minum. 10 µml
- Classe 15: spessore strato minum. 15 µml
- Classe 20: spessore strato minum. 20 µml.

Di queste la prima verrà impiegata in parti architettoniche per usi interni di non frequente manipolazione, la seconda per parti architettoniche esposte all'atmosfera con manutenzione periodica, la terza in parti esposte ad atmosfere industriali o marine e la quarta, di tipo rinforzato, in atmosfere particolarmente aggressive.

- **Q)** Rame: lamiere, nastri e fili saranno conformi alle UNI 3310/2^/3^/46 72.
- **R) Prodotti plastici metacrilici**: caratterizzati da infrangibilità, leggerezza ed elevatissima resistenza agli agenti atmosferici, dovranno rispondere alle prescrizioni di cui alle seguenti norme di unificazione: UNI 7067-72 ("Materie plastiche metacriliche per stampaggio ed estrusione. Tipi, prescrizioni e prove") e UNI 7074-72 ("Lastre di polimetilmetacrilato. Tipi, prescrizioni e prove"). Le lastre potranno essere di tipo I (colorate in forma e successivamente polimerizzate in blocco) e di tipo II (prepolimerizzate e termoestruse).

In ogni caso saranno assolutamente prive di difetti superficiali e di forma.

I lucernari, sia a cupola (a semplice od a doppia parete anticondensa) che continui, saranno fabbricati con lastre di polimetilmetacrilato delle migliori qualità (plexiglass, perspex, etc.).

S) Legnami: di qualunque essenza essi siano, dovranno soddisfare, sia per le opere definitive che per quelle provvisorie, a tutte le prescrizioni ed avere i requisiti delle precise categorie di volta in volta prescritte e non dovranno presentare difetti incompatibili con l'uso a cui sono stati destinati.

I legnami rotondi o pali dovranno provenire da vero tronco e non dai rami, saranno diritti in modo che la congiungente i centri delle due basi non esca in alcun punto dal palo.

Dovranno essere scortecciati per tutta la loro lunghezza e rettificati in superficie; la differenza fra i diametri medi delle estremità non dovrà oltrepassare il quarto del maggiore dei due diametri.

I legnami grossolanamente squadrati ed a spigolo smussato, dovranno avere tutte le facce spianate, tollerandosi in corrispondenza ad ogni spigolo l'alburno e lo smusso in misura non maggiore di 1/5 della minore dimensione trasversale dell'elemento.

I legnami a spigolo vivo dovranno essere lavorati e squadrati a sega e dovranno avere tutte le facce esattamente spianate, senza rientranze o risalti, con gli spigoli tirati a filo vivo, senza alburno né smussi di sorta.

I legnami, in genere, dovranno corrispondere ai requisiti di cui alle Norme UNI in vigore.

I legnami di tipo lamellare dovranno essere di qualità I secondo la normativa DIN 4074, con giunzioni a pettine secondo la normativa DIN 88140 e la loro essenza lignea sarà preferibilmente di abete rosso o larice

Le strutture in legno lamellare dovranno essere prodotte da stabilimenti in possesso del certificato di incollaggio di tipo A, in conformità alla norma DIN 1052. Gli eventuali trattamenti protettivi, gli spessori e le modalità applicative degli stessi, dovranno essere del tipo previsto negli elaborati progettuali.

- T) Leganti ed emulsioni bituminosi: dovranno soddisfare i requisiti stabiliti nelle corrispondenti norme C.NUM.R. "Norme per l'accettazione dei bitumi per usi stradali" Fascicolo num. 2 Ed. 1951; "Norme per l'accettazione delle emulsioni bituminose per usi stradali" Fascicolo num. 3 Ed. 1958 e loro eventuali successive modificazioni ed integrazioni.
- **U) Leganti bituminosi**: dovranno corrispondere ai requisiti di cui alle "Norme per l'accettazione dei bitumi per usi stradali" Fascicolo num. 7 Ed. 1957 del C.NUM.R. e eventuali successive modificazioni ed integrazioni.
- V) Geotessili: costituiti da tessuto non tessuto ottenuto da fibre 100% polipropilene o poliestere di prima qualità (con esclusione di fibre riciclate), agglomerate mediante sistema di agugliatura meccanica, stabilizzate ai raggi UV, con esclusione di collanti, resine, additivi chimici e/o processi di termofusione, termocalandratura e termolegatura. I geotessili sono a filo continuo quando il filamento ha lunghezza teoricamente illimitata.

Nella tabella che segue vengono riepilogate, in relazione alla natura chimica dei polimeri impiegati, le principali caratteristiche degli stessi:

Materie prime - caratteristiche tecniche	Poliestere	Polipropilene
Densità minum. (g/cmc)	1.38	0.90
Punto di rammollimento minum. (°C)	230÷250	140
Punto di fusione minum. (°C)	260÷265	170÷175
Punto d'umidità (% a 65% di umidità rel.)	0.4	0.04

I geotessili dovranno, non avere superficie liscia, essere imputrescibili ed atossici, resistenti ai raggi ultravioletti, ai solventi, alle reazioni chimiche che si producono nel terreno, alle cementazioni naturali, all'azione di microrganismi, essere antinquinanti ed isotropi.

Dovranno essere forniti in rotoli di larghezza la più ampia possibile in relazione alle modalità di impiego.

Caratteristiche tecniche Normativa campionatura (per N deve intendersi il rotolo o la pezza) UNI 8279/1 peso (g/mq) UNI 5114 UNI 8279/2 spessore (mm) UNI 8639 resistenza a trazione su striscia di 5 cm (N) allungamento (%) UNI 8639 lacerazione (N) UNI 8279/9 resistenza alla perforazione con il metodo della sfera (MPa) UNI 8279/11 punzonamento (N) UNI 8279/14 permeabilità radiale all'acqua (in cm/s) UNI 8279/13 comportamento nei confronti di batteri e funghi UNI 8986 diametro di filtrazione (uml)

Il materiale dovrà essere qualificato prima dell'impiego mediante le seguenti prove:

W) **Tubazioni in PVC:** in cloruro di polivinile rigido serie pesante, dei tipi 302, 303/1 e 303/2, secondo le vigenti Norme UNI, con giunti a bicchiere muniti di guarnizione in gomma.

Ogni tubo dovrà portare impresso, in modo evidente, leggibile ed indelebile, il nominativo del produttore, il diametro nominale, l'indicazione del tipo; dovrà essere munito inoltre del marchio di conformità alle Norme UNI rilasciato dall'Istituto Italiano dei Plastici.

X) Materiali per opere in verde:

<u>Terreno vegetale</u>: il materiale da impiegarsi per il rivestimento delle scarpate di rilevato, per la formazione delle banchine laterali per il ricarico, la livellazione e la ripresa di aree comunque destinate a verde, dovrà essere terreno vegetale, proveniente da scotico di terreno a destinazione agraria da prelevarsi fino alla profondità massima di 1.00 ml.

Qualora il prelevamento della terra venga fatto da terreni naturali non coltivati, la profondità di prelevamento sarà limitata al primo strato di suolo esplorato dalle radici delle specie a portamento erbaceo, ossia a quello spessore ove la presenza di humus e le caratteristiche fisico-microbiologiche del terreno permettono la normale vita dei vegetali, ma in ogni caso non superiore a 50 cm.

L'Appaltatore, prima di effettuare il prelevamento della terra, dovrà darne comunicazione alla Direzione dei Lavori.

La stessa eventualmente potrà richiedere un prelievo di campioni in contraddittorio, per le analisi di idoneità del materiale, da effettuarsi presso una stazione di chimica agraria riconosciuta, a cura e spese dell'Appaltatore.

<u>Concimi:</u> i prodotti minerali semplici o complessi usati per la concimazione di fondo od in copertura dovranno essere di marca nota sul mercato nazionale, avere titolo dichiarato ed essere conservati negli involucri originali di fabbrica.

<u>Materiale vivaistico</u>: l'Appaltatore deve dichiararne la provenienza e la Direzione Lavori potrà accettare il materiale, previa visita ai vivai che devono essere dislocati in zone limitrofe o comunque assimilabili.

Le piantine e talee dovranno essere comunque immuni da qualsiasi malattia parassitaria.

<u>Sementi:</u> l'Appaltatore dovrà fornire sementi di ottima qualità e rispondenti esattamente a genere e specie richiesta, sempre nelle confezioni originali sigillate munite di certificato di identità ed autenticità con l'indicazione

del grado di purezza e di germinabilità e della data di scadenza stabiliti dalle leggi vigenti.

Per evitare che possano alterarsi o deteriorarsi, le sementi devono essere immagazzinate in locali freschi, ben aerati e privi di umidità.

^{*} corrispondente a quello del 95% in peso degli elementi di terreno che hanno attraversato il geotessile, determinato mediante filtrazione idrodinamica.

Per il prelievo dei campioni di controllo, valgono le norme dell'art. 1.

Per ulteriori approfondimenti, riguardanti tutti i materiali per opere in verde, si fa riferimento a quanto riportato nell'articolo specifico per l'esecuzione dei lavori.

Y) Materiali di qualsiasi provenienza da impiegare nelle lavorazioni: materiali per rilevati e/o riempimenti, aggregati grossi e fini per conglomerati, drenaggi, fondazioni stradali, pietrame per murature, drenaggi, gabbioni, etc.

I materiali da impiegare nelle lavorazioni sopra indicate dovranno essere sottoposti dalla Direzione Lavori, prima del loro impiego, alle verifiche e prove di laboratorio, per accertarne la idoneità in relazione alle particolari utilizzazioni previste.

Dopo che la Direzione Lavori avrà espresso il proprio benestare sulla base dei risultati delle prove di laboratorio, il materiale potrà essere impiegato nella produzione, fermo restando che l'Appaltatore stessa sarà responsabile, a tutti gli effetti della rispondenza alle specifiche norme contrattuali.

Gli oneri per prove e verifiche di idoneità sono a totale ed esclusivo carico dell'Appaltatore.

CAPO II – NORME PER LA ESECUZIONE DEI LAVORI –

Art. 3 - Movimenti di terra

- Definizioni e classificazioni

I movimenti di terra comprendono le seguenti categorie di lavoro:

- Diserbamento e scoticamento
- Scavi
- Rinterri
- Rilevati

Nei paragrafi seguenti sono definite le prescrizioni relative a ciascuna categoria di lavoro nonché le prescrizioni ed oneri di carattere generale ed i controlli da eseguire.

- Prescrizioni tecniche particolari

Diserbamento e scotico

Il diserbamento consiste nella rimozione ed asportazione di erbe, radici, cespugli, piante e alberi. Lo scoticamento consiste nella rimozione ed asportazione del terreno vegetale, di qualsiasi consistenza e con qualunque contenuto d'acqua.

Nella esecuzione dei lavori l'Impresa dovrà attenersi a quanto segue:

- a) il diserbamento e lo scoticamento del terreno dovranno sempre essere eseguiti prima di effettuare qualsiasi lavoro di scavo o rilevato;
- b) tutto il materiale vegetale, inclusi ceppi e radici, dovrà essere completamente rimosso, alterando il meno possibile la consistenza originaria del terreno in sito.
- c) Il materiale vegetale scavato, se riconosciuto idoneo dalla D.L., previo ordine di servizio, potrà essere utilizzato per il rivestimento delle scarpate; diversamente il materiale scavato dovrà essere trasportato a discarica.

Rimane comunque categoricamente vietata la posa in opera di tale materiale per la costruzione dei rilevati.

d) La larghezza dello scoticamento ha l'estensione dell'intera area di appoggio e potrà essere continua od opportunamente gradonata secondo i profili e le indicazioni che saranno date dalla D.L. in relazione alle pendenze dei siti di impianto. Lo scoticamento sarà stabilito di norma alla quota di cm 30 al di sotto del piano campagna e sarà ottenuto praticando i necessari scavi di sbancamento tenuto conto

della natura e consistenza delle formazioni costituenti i siti di impianto preventivamente accertate anche con l'ausilio di prove di portanza.

- Scavi

Il diserbamento consiste nella rimozione ed asportazione di erbe, radici, cespugli, piante e alberi. Lo scoticamento consiste nella rimozione ed asportazione del terreno vegetale, di qualsiasi consistenza e con qualunque contenuto d'acqua.

Nella esecuzione dei lavori l'Impresa dovrà attenersi a quanto segue:

- e) il diserbamento e lo scoticamento del terreno dovranno sempre essere eseguiti prima di effettuare qualsiasi lavoro di scavo o rilevato;
- f) tutto il materiale vegetale, inclusi ceppi e radici, dovrà essere completamente rimosso, alterando il meno possibile la consistenza originaria del terreno in sito.
- g) Il materiale vegetale scavato, se riconosciuto idoneo dalla D.L., previo ordine di servizio, potrà essere utilizzato per il rivestimento delle scarpate; diversamente il materiale scavato dovrà essere trasportato a discarica.

Rimane comunque categoricamente vietata la posa in opera di tale materiale per la costruzione dei rilevati.

h) La larghezza dello scoticamento ha l'estensione dell'intera area di appoggio e potrà essere continua od opportunamente gradonata secondo i profili e le indicazioni che saranno date dalla D.L. in relazione alle pendenze dei siti di impianto. Lo scoticamento sarà stabilito di norma alla quota di cm 30 al di sotto del piano campagna e sarà ottenuto praticando i necessari scavi di sbancamento tenuto conto della natura e consistenza delle formazioni costituenti i siti di impianto preventivamente accertate anche con l'ausilio di prove di portanza.

Scavi di sbancamento

Sono così denominati i movimenti terra di grande entità eseguiti generalmente all'aperto senza particolari limitazioni sia fuori che in acqua, ovvero gli scavi non chiusi ed occorrenti per:

- apertura della sede stradale;
- apertura dei piazzali e delle opere accessorie;
- gradonature di ancoraggio dei rilevati su pendenze superiori al 20%;
- bonifica del piano di posa dei rilevati;
- spianamento del terreno;
- impianto di opere d'arte;
- taglio delle scarpate di trincee o rilevati;
- formazione o approfondimento di cunette, di fossi e di canali;

Scavi di fondazione

Sono così denominati gli scavi chiusi da pareti, di norma verticali o subverticali, riproducenti il perimetro dell'opera, effettuati al di sotto del piano orizzontale passante per il punto più depresso del terreno lungo il perimetro medesimo.

Questo piano sarà determinato, a giudizio della D.L., o per l'intera area di fondazione o per più parti in cui questa può essere suddivisa, a seconda sia della accidentalità del terreno, sia delle quote dei piani finiti di fondazione.

Gli scavi saranno, a giudizio insindacabile della D.L., spinti alla necessaria profondità, fino al rinvenimento del terreno avente la capacità portante prevista in progetto.

I piani di fondazione saranno perfettamente orizzontali o disposti a gradoni con leggera pendenza verso monte per quelle opere che ricadessero sopra falde inclinate; le pareti saranno verticali od a scarpa.

Gli scavi di fondazione potranno essere eseguiti, ove ragioni speciali non lo vietino, anche con pareti a scarpa aventi la pendenza minore di quella prevista, ma in tal caso non saranno computati né il maggiore scavo di fondazione e di sbancamento eseguito di conseguenza né il conseguente maggior volume di riempimento..

E' vietato all'Impresa, sotto pena di demolire il già fatto, di porre mano alle murature o ai getti prima che la D.L. abbia verificato ed accettato i piani di fondazione.

L'Impresa dovrà provvedere, a sua cura e spese , al riempimento con materiali idonei dei vuoti residui degli scavi di fondazione intorno alle murature ed al loro costipamento fino alla quota prevista.

Per gli scavi di fondazione si applicheranno le norme previste dal D.M. 11/3/1988 (S.O. alla G.U. 1/6/1988n. 127; Circ. Serv. Tecnico Centrale LL. PP. del 24/09/1988 n° 30483) e successivi aggiornamenti.

Gli scavi di fondazione saranno considerati scavi subacquei solo se eseguiti a profondità maggiore di 20 cm sotto il livello costante a cui si stabilizzano le acque eventualmente esistenti nel terreno.

Gli esaurimenti d'acqua dovranno essere eseguiti con i mezzi più opportuni per mantenere costantemente asciutto il fondo dello scavo e tali mezzi dovranno essere sempre in perfetta efficienza, nel numero e con le portate e le prevalenze necessarie e sufficienti per garantire la continuità del prosciugamento.

Resta comunque inteso che, nell'esecuzione di tutti gli scavi, l'Impresa dovrà provvedere di sua iniziativa ed a sua cura e spese ad assicurare il naturale deflusso delle acque che si riscontrassero scorrenti sulla superficie del terreno, allo scopo di evitare che esse si versino negli scavi.

Provvederà, a sua cura e spesa, a togliere ogni impedimento, ogni causa di rigurgito che si opponesse così al regolatore deflusso delle acque, anche ricorrendo alla apertura di canali fugatori; analogamente l'Impresa dovrà adempiere agli obblighi previsti dalle leggi (decreto legislativo 11 maggio 1999, n. 152 e successivi aggiornamenti ed integrazioni, leggi regionali emanate in applicazione del citato decreto) in ordine alla tutela delle acque dall'inquinamento, all'espletamento delle pratiche per l'autorizzazione allo scarico nonché all'eventuale trattamento delle acque.

Rinterri e/o bonifiche

Per rinterri si intendono i lavori di:

- <u>bonifica</u> di zone di terreno non idoneo, al disotto del piano di posa di manufatti e rilevati, effettuata mediante sostituzione dei terreni esistenti con materiale idoneo;
- <u>riempimento</u> di scavi relativi a fondazioni, trincee, cunicoli, pozzetti, etc. eseguiti in presenza di manufatti;
- sistemazione superficiale eseguita con o senza apporto di materiale.

Bonifica

a) La bonifica del terreno di appoggio del rilevato, nell'accezione più generale, dovrà essere eseguita in conformità alle previsioni di progetto, ed ogni qualvolta nel corso dei lavori si dovessero trovare zone di terreno non idoneo e/o comunque non conforme alle specifiche di progetto.

Pertanto il terreno in sito, per la parte di scadenti caratteristiche meccaniche o contenente notevoli quantità di sostanze organiche, dovrà essere sostituito con materiale selezionato appartenente ai gruppi (CNR-UNI 10006):

- A_1 , A_3 se proveniente da cave di prestito; nel caso in cui il materiale appartenga al gruppo A_3 , deve presentare un coefficiente di uniformità (D_{60}/D_{10}) maggiore o uguale a 7;
- A_1 , A_{2-4} , A_{2-5} , A_3 , se proveniente dagli scavi; il materiale appartenente al gruppo A_3 deve presentare un coefficiente di uniformità (D_{60}/D_{10}) maggiore o uguale a 7;

Il materiale dovrà essere messo in opera a strati di spessore non superiore a 50 cm (materiale sciolto) e compattato fino a raggiungere il 95% della massa volumica del secco massima ottenuta attraverso la prova di compattazione AASHO modificata (CNR 69 - 1978), (CNR 22 - 1972).

Per il materiale dei gruppi A_{2-4} e A_{2-5} , gli strati dovranno avere spessore non superiore a 30 cm (materiale sciolto).

Il modulo di deformazione dovrà risultare non inferiore a 10 MPa (nell'intervallo di carico compreso tra 0,05 e 0,15 N/mm²)

b) Nel caso in cui la bonifica di zone di terreno di cui al punto a) debba essere eseguita in presenza d'acqua, l'Impresa dovrà provvedere ai necessari emungimenti per mantenere costantemente asciutta la zona di scavo da bonificare fino ad ultimazione dell'attività stessa.

Rinterri

- a) Per il rinterro degli scavi relativi a fondazioni e manufatti in calcestruzzo dovrà utilizzarsi materiale selezionato appartenente esclusivamente ai gruppi A_1 ed A_3 (UNI-CNR 10006) opportunamente compattato; il materiale appartenente al gruppo A_3 dovrà presentare un coefficiente di uniformità (D_{60}/D_{10}) maggiore o uguale a 7;
- b) Il rinterro di scavi relativi a tubazioni interrate e cavi elettrici sarà effettuato con materiali sabbiosi (o comunque con materiali che durante l'operazione di rinterro non danneggino dette installazioni).

In linea di massima i materiali da utilizzare in detti rinterri saranno specificati sui disegni costruttivi.

Sistemazione superficiale

La sistemazione delle aree superficiali dovrà essere effettuata con materiali selezionati appartenenti esclusivamente ai gruppi A_1 ed A_3 (UNI-CNR 10006), , con spandimento a strati opportunamente compattato fino a raggiungere il 95% della massa volumica del secco massima ottenuta con energia AASHO modificata (CNR 69 - 1978), (CNR 22 - 1972), procedendo alla regolarizzazione delle pendenze secondo le indicazioni del progetto.

Il materiale appartenente al gruppo A3 dovrà presentare un coefficiente di uniformità (D60/D10) maggiore o uguale a 7.

- Rilevati

Con il termine "rilevati" sono definite tutte le opere in terra destinate a formare il corpo stradale, le opere di presidio, i piazzali, nonché il piano d'imposta delle pavimentazioni.

Formazione del rilevato - Generalità, caratteristiche e requisiti dei materiali

Si considerano separatamente le seguenti categorie di lavori:

- Rilevati stradali;
- Rilevati realizzati in terra rinforzata;

La classificazione delle terre e la determinazione del loro gruppo di appartenenza sarà conforme alle norme CNR 10006.

Rilevati stradali

I rilevati saranno eseguiti con le esatte forme e dimensioni indicate nei disegni di progetto e non dovranno superare la quota del piano di appoggio della fondazione stradale (sottofondo).

Nella formazione dei rilevati saranno innanzitutto impiegate le materie provenienti da scavi di sbancamento, di fondazione od in galleria.

Impiego di terre appartenenti ai gruppi A1, A2-4, A2-5, A3

Dovranno essere impiegati materiali appartenenti ai gruppi A_1 , A_{2-4} , A_{2-5} , A_3 , il materiale appartenente al gruppo A_3 dovrà presentare un coefficiente di uniformità (D_{60}/D_{10}) maggiore o uguale a 7.

Per l'ultimo strato di 30 cm dovranno essere impiegati materiali appartenenti esclusivamente ai gruppi A_1 -a e A_3 (per le terre appartenenti al gruppo A_3 vale quanto già detto in precedenza).

I materiali impiegati dovranno essere del tutto esenti da frazioni o componenti vegetali, organiche e da elementi solubili, gelivi o comunque instabili nel tempo, non essere di natura argillo-scistosa nonché alterabili o molto fragili.

L'impiego di rocce frantumate è ammesso nella restante parte del rilevato, se di natura non geliva, se stabili con le variazioni del contenuto d'acqua e se tali da presentare pezzature massime non eccedenti i 20 cm, nonché di soddisfare i requisiti già precedentemente richiamati.

Di norma la dimensione delle massime pezzature ammesse non dovrà superare i due terzi dello spessore dello strato compattato.

Il materiale a pezzatura grossa (compreso tra i 7,1 ed i 20 cm) deve essere di pezzatura disuniforme e non deve costituire più del 30% del volume del rilevato; in particolare dovrà essere realizzato un accurato intasamento dei vuoti, in modo da ottenere, per ogni strato, una massa ben assestata e compattata.

Nel caso si utilizzino rocce tufacee, gli scapoli dovranno essere frantumati completamente, con dimensioni massime di 10 cm.

A compattazione avvenuta i materiali dovranno presentare una massa volumica del secco pari o superiore al 90% della massa volumica del secco massima individuata dalle prove di compattazione AASHO Mod. (CNR 69 - 1978), (CNR 22 - 1972), e/o un modulo di deformabilità non minore di 15 MPa (nell'intervallo di carico compreso tra 0.05 e 0.15 N/mm²) (CNR 146 - 1992), salvo per l'ultimo strato di 30 cm costituente il piano di posa della fondazione della pavimentazione, che dovrà presentare un grado di costipamento pari o superiore al 95% e salvo diverse e più restrittive prescrizioni motivate, in sede di progettazione, dalla necessità di garantire la stabilità del rilevato e della pavimentazione stradale in trincea, il modulo di deformazione al primo ciclo di carico su piastra (diametro 30 cm) dovrà risultare non inferiore a:

15 MPa: nell'intervallo compreso tra 0.15 - 0.25 da N/mm² sul piano di posa della fondazione della pavimentazione stradale sia in rilevato che in trincea;

Per altezze di rilevato superiori a 2 m potranno essere accettati valori inferiori a 15 MPa sempre che sia garantita la stabilità dell'opera e la compatibilità dei cedimenti, sia totali che differenziali, e del loro decorso nel tempo.

Le caratteristiche di deformabilità dovranno essere accertate in modo rigoroso e dovranno essere garantite, anche a lungo termine, nelle condizioni climatiche e idrogeologiche più sfavorevoli

Su ciascuna sezione trasversale i materiali impiegati per ciascuno strato dovranno essere dello stesso gruppo.

Nel caso di rilevati aventi notevole altezza, dovranno essere realizzate banchine di scarpata della larghezza di 2 m a quota idonea e comunque ad una distanza verticale dal ciglio del rilevato non superiore a 6 m.

Le scarpate dovranno avere pendenze non superiori a quelle previste in progetto ed indicate nei corrispondenti elaborati.

Quando siano prevedibili cedimenti del piano di appoggio dei rilevati superiori ai 15 cm, l'Impresa sottoporrà alla D.L. un piano per il controllo dell'evoluzione dei cedimenti.

La posa in opera delle apparecchiature necessarie a tale scopo e il rilevamento dei cedimenti saranno eseguite a cura e spese dell'impresa in accordo con la D.L..

In ogni caso l'Impresa dovrà provvedere a reintegrare i maggiori volumi di rilevato per il raggiungimento della quota di progetto ad avvenuto esaurimento dei cedimenti.

La costruzione del rilevato dovrà essere programmata in maniera tale che il cedimento residuo da scontare, terminati i lavori, non sia superiore al 10% del cedimento teorico a fine consolidazione e comunque non superiore ai 5 cm.

Ogni qualvolta i rilevati dovranno poggiare su declivi con pendenza superiore al 20%, ultimata l'asportazione del terreno vegetale e fatta eccezione per diverse e più restrittive prescrizioni derivanti dalle specifiche condizioni di stabilità globale del pendio, si dovrà procedere all'esecuzione di una gradonatura con banche in leggera contropendenza (1% - 2%) e alzate verticali contenute in altezza.

Nel caso di allargamento di un rilevato esistente, si dovrà ritagliare, con ogni cautela , a gradoni orizzontali il terreno costituente il corpo del rilevato sul quale verrà addossato il nuovo materiale, con la cura di procedere per fasi, in maniera tale da far seguire ad ogni gradone (altezza massima 50 cm) la stesa del corrispondente nuovo strato, di analoga altezza ed il suo costipamento, consentendo nel contempo l'eventuale viabilità del rilevato esistente.

L'operazione di gradonatura sarà preceduta dalla rimozione dello strato di terreno vegetale a protezione del rilevato esistente, che sarà accantonato se ritenuto idoneo o portato a rifiuto se inutilizzabile.

Anche il materiale di risulta proveniente dallo scavo dei gradoni al di sotto della coltre vegetale superficiale, sarà accantonato se ritenuto idoneo e riutilizzato per la costruzione del nuovo rilevato, o portato a rifiuto se inutilizzabile.

Impiego di terre appartenenti ai gruppi A2-6, A2-7

Saranno impiegate terre appartenenti ai gruppi A_{2-6} , A_{2-7} , solo se provenienti dagli scavi e previste nel progetto.

Il loro utilizzo è previsto per la formazione di rilevati, soltanto al di sotto di 2,0 m dal piano di posa della fondazione della pavimentazione stradale, previa predisposizione di uno strato anticapillare di spessore non inferiore a 30 cm.

Il grado di costipamento e la umidità con cui costipare i rilevati formati con materiale dei gruppi in oggetto, dovranno essere preliminarmente determinati dall'Impresa e sottoposti alla approvazione della Direzione Lavori, attraverso una opportuna campagna sperimentale.

In ogni caso lo spessore degli strati sciolti non dovrà superare 30 cm ed il materiale dovrà essere convenientemente disaggregato.

Impiego di terre appartenenti ai gruppi A4, A5, A6, 7

Per quanto riguarda le terre provenienti da scavi di sbancamento e di fondazione appartenenti ai gruppi A₄, A₅, A₆, A₇ si esaminerà, di volta in volta, l'eventualità di portarlo a rifiuto ovvero di utilizzarlo previa idonea correzione (a calce e/o cemento, punto 2.4.8.1 e seguenti), attraverso una opportuna campagna sperimentale.

I rilevati con materiali corretti potranno essere eseguiti dietro ordine della Direzione dei Lavori solo quando vi sia la possibilità di effettuare un tratto completo di rilevato ben definito delimitato tra due sezioni trasversali del corpo stradale.

In ogni caso lo spessore degli strati sciolti non dovrà superare 30 cm.

Generalità

Fintanto che non siano state esaurite, per la formazione dei rilevati, tutte le disponibilità dei materiali idonei proveniente dagli scavi di sbancamento, di fondazione od in galleria, le eventuali cave di prestito che l'Impresa volesse aprire, ad esempio per economia dei trasporti, saranno a suo totale carico. L'Impresa non potrà quindi pretendere sovrapprezzi, né prezzi diversi da quelli stabiliti in elenco per la formazione dei rilevati con utilizzazione di materie provenienti dagli scavi di trincea, opere d'arte ed annessi stradali, qualora, pur essendoci disponibilità ed idoneità di queste materie scavate, essa ritenesse di sua convenienza, per evitare rimaneggiamenti o trasporti a suo carico, di ricorrere, in tutto o in parte, a cave di prestito.

Qualora, una volta esauriti i materiali provenienti dagli scavi ritenuti idonei in base a quanto precedentemente riportato, occorressero ulteriori quantitativi di materie per la formazione dei rilevati, l'Impresa potrà ricorrere al prelevamento di materie da cave di prestito, sempre che abbia preventivamente richiesto ed ottenuto l'autorizzazione da parte della Direzione dei Lavori.

È fatto obbligo all'Impresa di indicare le cave, dalle quali essa intende prelevare i materiali per la costruzione dei rilevati, alla Direzione dei Lavori che si riserva la facoltà di fare analizzare tali materiali presso Laboratori ufficiali, sempre a spese dell'Impresa.

Solo dopo che vi sia stato l'assenso della Direzione dei Lavori per l'utilizzazione della cava, l'Impresa è autorizzata a sfruttare la cava per il prelievo dei materiali da portare in rilevato.

L'accettazione della cava da parte della Direzione dei Lavori non esime l'Impresa dall'assoggettarsi, in ogni periodo di tempo, all'esame delle materie che dovranno corrispondere sempre a quelle di prescrizione e pertanto, ove la cava in seguito non si dimostrasse capace di produrre materiale idoneo per una determinata lavorazione, essa non potrà più essere coltivata.

Per quanto riguarda le cave di prestito l'Impresa, dopo aver ottenuto la necessaria autorizzazione da parte degli enti preposti alla tutela del territorio, è tenuta a corrispondere le relative indennità ai proprietari di tali cave e a provvedere a proprie spese al sicuro e facile deflusso delle acque che si raccogliessero nelle cave stesse, evitando nocivi ristagni e danni alle proprietà circostanti e sistemando convenientemente le relative scarpate, in osservanza anche a quanto è prescritto dall'art. 202 del T.U. delle leggi sanitarie 27 luglio 1934, n. 1265 e delle successive modifiche; dal T.U. delle leggi sulla bonifica dei terreni paludosi 30 dicembre 1923, n.3267, successivamente assorbito dal testo delle norme sulla Bonifica Integrale approvato con R.D.13 febbraio 1933, n. 215 e successive modifiche.

Rilevati rinforzati

Dovranno essere impiegati esclusivamente materiali appartenenti ai gruppi A_1 e A_3 ; il materiale appartenente al gruppo A_3 dovrà presentare un coefficiente di uniformità maggiore o uguale a 7, e comunque con pezzatura massima non superiore 71 mm, A_{2-4} e A_{2-6} .

Prevedendosi l'uso di rinforzi (metallici, con l'impiego di geotessili, ecc.) per i materiali impiegati dovranno essere preliminarmente verificate le seguenti condizioni:

- contenuto in sali;
- solfuri, del tutto assenti;
- solfati, solubili in acqua, minori di 500 mg/kg;
- cloruri, minori di 100 mg/kg;
- pH compreso tra 5 e 10;
- resistività elettrica superiore a 1.000 ohm x cm per opere all'asciutto, superiore a 3.000 ohm x cm per opere immerse in acqua.

La compattazione di detti materiali dovrà risultare tale da garantire una massa volumica del secco misurata alla base di ciascuno strato, non inferiore al 95% della massa volumica del secco massima individuata mediante la prova AASHO Mod (CNR 69 - 1978), (CNR 22 - 1972), ed il modulo di deformabilità (CNR 146 - 1992) non dovrà essere inferiore ai 15 MPa, nell'intervallo di carico tra 0,05 – 0,15 N/mm².

- Costruzione del rilevato

Formazione dei piani di posa dei rilevati e della sovrastruttura stradale in trincea o in rilevato (sottofondo)

Salvo diverse e più restrittive prescrizioni motivate in sede di progettazione dalla necessità di garantire la stabilità del rilevato e delle sovrastruttura stradale in trincea o in rilevato, il modulo di deformazione al primo ciclo di carico su piastra (diametro 30 cm) (CNR 146 - 1992) dovrà risultare non inferiore a:

15 MPa: nell'intervallo compreso tra 0.15 - 0.25 da N/mm² sul piano di posa della fondazione della pavimentazione stradale sia in rilevato che in trincea;

Per altezze di rilevato superiori a 2 m potranno essere accettati valori inferiori a 15 MPa sempre che sia garantita la stabilità dell'opera e la compatibilità dei cedimenti, sia totali, sia differenziali, e del loro decorso nel tempo.

Le caratteristiche di deformabilità dovranno essere accertate con prove rigorose che dovranno essere garantite, anche a lungo termine, nelle condizioni climatiche e idrogeologiche più sfavorevoli; si fa esplicito riferimento a quei materiali a comportamento "instabile" (collassabili, espansivi, gelivi, etc.) per i quali la determinazione del modulo di deformazione sarà affidata a prove speciali (edometriche, di carico su piastra in condizioni sature ecc.).

Il conseguimento dei valori minimi di deformabilità sopra indicati sarà ottenuto compattando il fondo dello scavo mediante rullatura eseguita con mezzi consoni alla natura dei terreni in posto.

A rullatura eseguita la massa volumica in sito dovrà risultare come segue:

almeno pari al 90% della massa volumica massima AASHO modificata (CNR 69 - 1978), (CNR 22 - 1972), sul piano di posa dei rilevati;

almeno pari al 95% della massa volumica massima AASHO modificata (CNR 69 - 1978), (CNR 22 - 1972), sul piano di posa della fondazione della sovrastruttura stradale.

Laddove le peculiari caratteristiche dei terreni in posto (materiali coesivi o semicoesivi, saturi o parzialmente saturi) rendessero inefficace la rullatura e non si pervenisse a valori del modulo di deformazione accettabili e compatibili con la funzionalità e la sicurezza del manufatto la Direzione Lavori, sentito il Progettista, potrà ordinare un intervento di bonifica di adeguato spessore, con l'impiego di materiali idonei adeguatamente miscelati e compattati.

Strato di transizione (Rilevato – Terreno)

Quando previsto in progetto, in relazione alle locali caratteristiche idrogeologiche, alla natura dei materiali costituenti il rilevato, allo scopo di migliorare le caratteristiche del piano di imposta del rilevato, verrà eseguita:

la stesa di uno strato granulare con funzione anticapillare;

la stesa di uno strato di geotessile "non tessuto" come da punto 2.3.2.4.6.4.

Strato granulare anticapillare

Lo strato dovrà avere uno spessore compreso tra 0,3-0,5 m; sarà composto di materiali aventi granulometria assortita da 2 a 50 mm, con passante al vaglio da 2 mm non superiore al 15% in peso e comunque con un passante al vaglio UNI 0,075 mm non superiore al 3%.

Il materiale dovrà risultare del tutto esente da componenti instabili (gelivi, solubili, etc.) e da resti vegetali; è ammesso l'impiego di materiali frantumati.

Telo Geotessile "tessuto non tessuto"

Lo strato di geotessile da stendere sul piano di posa del rilevato dovrà essere del tipo non tessuto in polipropilene .

Il geotessile dovrà essere del tipo "a filo continuo", prodotto per estrusione del polimero.

Dovrà essere composto al 100% da polipropilene di prima scelta (con esclusione di fibre riciclate), agglomerato con la metodologia dell'agugliatura meccanica, al fine di evitare la termofusione dei fili costituenti la matrice del geotessile.

Non dovranno essere aggiunte, per la lavorazione, resine o altre sostanze collanti.

Caratteristiche tecniche	POLIPROPILENE
Massa volumica (g/cm ³⁾	0,90
Punto di rammollimento(K)	413
Punto di fusione (K)	443 ÷ 448
Punto di umidità % (al 65% di umidità	0,04
relativa)	
Resistenza a trazione (N/5 cm)	1900

Il geotessile dovrà essere imputrescibile, resistente ai raggi ultravioletti, ai solventi, alle reazioni chimiche che si instaurano nel terreno, all'azione dei microrganismi ed essere antinquinante.

Dovrà essere fornito in opera in rotoli di larghezza la più ampia possibile in relazione al modo d'impiego.

Il piano di stesa del geotessile dovrà essere perfettamente regolare.

Dovrà essere curata la giunzione dei teli mediante sovrapposizione di almeno 30 cm nei due sensi longitudinale e trasversale.

I teli non dovranno essere in alcun modo esposti al diretto passaggio dei mezzi di cantiere prima della loro totale copertura con materiale da rilevato per uno spessore di almeno 30 cm.

Stesa dei materiali

La stesa del materiale dovrà essere eseguita con sistematicità per strati di spessore costante e con modalità e attrezzature atte a evitare segregazione, brusche variazioni granulometriche e del contenuto d'acqua.

Durante le fasi di lavoro si dovrà garantire il rapido deflusso delle acque meteoriche conferendo sagomature aventi pendenza trasversale non inferiore al 2%. In presenza di strati di rilevati rinforzati, o di muri di sostegno in genere, la pendenza trasversale sarà contrapposta ai manufatti.

Ciascuno strato potrà essere messo in opera, pena la rimozione, soltanto dopo avere certificato mediante prove di controllo l'idoneità dello strato precedente.

Lo spessore dello strato sciolto di ogni singolo strato sarà stabilito in ragione delle caratteristiche dei materiali, delle modalità di compattazione e della finalità del rilevato.

Lo spessore non dovrà risultare superiore ai seguenti limiti:

50 cm per rilevati formati con terre appartenenti ai gruppi A₁, A₂₋₄, A₂₋₅, A₃ o con rocce frantumate;

40 cm per rilevati in terra rinforzata;

30 cm per rilevati eseguiti con terre appartenenti ai gruppi A₂₋₆, A₂₋₇.

Per i rilevati eseguiti con la tecnica della terra rinforzata e in genere per quelli delimitati da opere di sostegno rigide o flessibili (quali gabbioni) sarà tassativo che la stesa avvenga sempre parallelamente al paramento esterno.

La compattazione potrà aver luogo soltanto dopo aver accertato che il contenuto d'acqua delle terre sia prossimo (±1,5% circa) a quello ottimo determinato mediante la prova AASHO Modificata (CNR 69 - 1978).

Se tale contenuto dovesse risultare superiore, il materiale dovrà essere essiccato per aerazione; se inferiore, l'aumento sarà conseguito per umidificazione e con modalità tali da garantire una distribuzione uniforme entro l'intero spessore dello strato.

Le attrezzature di costipamento saranno lasciate alla libera scelta dell'Impresa ma dovranno comunque essere atte ad esercitare sul materiale, a seconda del tipo di esso, una energia costipante tale da assicurare il raggiungimento del grado di costipamento prescritto e previsto per ogni singola categoria di lavoro.

Il tipo, le caratteristiche e il numero dei mezzi di compattazione nonché le modalità esecutive di dettaglio (numero di passate, velocità operativa, frequenza) dovranno essere sottoposte alla preventiva approvazione della Direzione Lavori .

La compattazione dovrà essere condotta con metodologia atta ad ottenere un addensamento uniforme; a tale scopo i rulli dovranno operare con sistematicità lungo direzioni parallele garantendo una sovrapposizione fra ciascuna passata e quella adiacente pari almeno al 10% della larghezza del rullo.

Per garantire una compattazione uniforme lungo i bordi del rilevato le scarpate dovranno essere riprofilate, una volta realizzata l'opera, rimuovendo i materiali eccedenti la sagoma.

In presenza di paramenti flessibili e murature laterali, la compattazione a tergo delle opere dovrà essere tale da escludere una riduzione nell'addensamento e nel contempo il danneggiamento delle opere stesse.

Le terre trasportate mediante autocarri o mezzi simili non dovranno essere scaricate direttamente a ridosso delle murature, ma dovranno essere depositate in loro vicinanza e successivamente predisposte in opera con mezzi adatti, per la formazione degli strati da compattare.

Si dovrà inoltre evitare di realizzare rilevati e/o rinterri in corrispondenza di realizzazioni in muratura che non abbiano raggiunto le sufficienti caratteristiche di resistenza.

Nel caso di inadempienza delle prescrizioni precedenti sarà fatto obbligo all'appaltatore, ed a suo carico, di effettuare tutte le riparazioni e ricostruzioni necessarie per garantire la sicurezza e la funzionalità dell'opera.

Inoltre si dovrà evitare che i grossi rulli vibranti operino entro una distanza inferiore a 1,5 m dai paramenti della terra rinforzata o flessibili in genere.

A tergo dei manufatti si useranno mezzi di compattazione leggeri quali piastre vibranti, rulli azionati a mano, provvedendo a garantire i requisiti di deformabilità e addensamento richiesti anche operando su strati di spessore ridotto.

Nella formazione di tratti di rilevato rimasti in sospeso per la presenza di tombini, canali, cavi, ecc. si dovrà garantire la continuità con la parte realizzata impiegando materiali e livelli di compattazione identici.

A ridosso delle murature dei manufatti la D.L. ha facoltà di ordinare la stabilizzazione a cemento dei rilevati mediante miscelazione in sito del legante con i materiali costituenti i rilevati stessi, privati però delle pezzature maggiori di 40 mm.

Il cemento sarà del tipo normale ed in ragione di 25-50 kg/m³ di materiale compattato.

La Direzione Lavori prescriverà il quantitativo di cemento in funzione della granulometria del materiale da impiegare.

La miscela dovrà essere compattata fino al 95% della massa volumica del secco massima, ottenuta con energia AASHO Modificata (CNR 69 -1978), (CNR 22 - 1972), procedendo per strati di spessore non superiore a 30 cm.

Tale stabilizzazione a cemento dei rilevati dovrà interessare una zona la cui sezione, lungo l'asse stradale, sarà a forma trapezia avente la base inferiore di 2,00 m, quella superiore pari a 2,00 m + 3/2 h e l'altezza h coincidente con quella del rilevato.

Durante la costruzione dei rilevati si dovrà disporre in permanenza di apposite squadre e mezzi di manutenzione per rimediare ai danni causati dal traffico di cantiere oltre a quelli dovuti alla pioggia e al gelo.

Si dovrà inoltre garantire la sistematica e tempestiva protezione delle scarpate mediante la stesa di uno strato di terreno vegetale di 30 cm di spessore, da stendere a cordoli orizzontali opportunamente costipati seguendo dappresso la costruzione del rilevato e ricavando gradoni di ancoraggio, salvo il caso che il rivestimento venga eseguito contemporaneamente alla formazione del rilevato stesso, nel quale detti gradoni non saranno necessari, e che sia tale da assicurare il pronto attecchimento e sviluppo del manto erboso.

La semina dovrà essere eseguita con semi (di erbe ed arbusti), scelti in relazione al periodo di semina ed alle condizioni locali, si da ottenere i migliori risultati.

La semina dovrà essere ripetuta fino ad ottenere un adeguato ed uniforme inerbimento.

Si potrà provvedere all'inerbimento mediante sistemi alternativi ai precedenti, purché concordati con la Direzione Lavori.

Qualora si dovessero manifestare erosioni di sorta, l'impresa dovrà provvedere al restauro delle zone ammalorate a sua cura e spese e secondo le disposizioni impartite di volta in volta dalla Direzione Lavori.

Se nei rilevati avvenissero cedimenti dovuti a trascuratezza delle buone norme esecutive l'Appaltatore sarà obbligato ad eseguire a sue spese i lavori di ricarico, rinnovando, ove occorre, anche la sovrastruttura stradale.

Nel caso di sospensione della costruzione del rilevato, alla ripresa delle lavorazioni, la parte di rilevato già eseguita dovrà essere ripulita dalle erbe e dalla vegetazione in genere che vi si fosse insediata, dovrà inoltre essere aerata, praticandovi dei solchi per il collegamento dei nuovi materiali come quelli finora impiegati e dovranno essere ripetute le prove di controllo delle compattazioni e della deformabilità.

Qualora si dovessero costruire dei rilevati non stradali (argini di contenimento), i materiali provenienti da cave di prestito potranno essere solo del tipo A_{κ} e A_{τ} .

Restano ferme le precedenti disposizioni sulla compattazione.

Condizioni climatiche

La costruzione di rilevati in presenza di gelo o di pioggia persistenti non sarà consentita in linea generale, fatto salvo particolari deroghe da parte della Direzione Lavori, limitatamente a quei materiali meno suscettibili all'azione del gelo e delle acque meteoriche (es.: pietrame).

Nella esecuzione dei rilevati con terre ad elevato contenuto della frazione coesiva si procederà, per il costipamento, mediante rulli a punte e carrelli pigiatori gommati. che consentono di chiudere la superficie dello strato in lavorazione in caso di pioggia.

Alla ripresa del lavoro la stessa superficie dovrà essere convenientemente erpicata provvedendo eventualmente a rimuovere lo strato superficiale rammollito.

Rilevati con materiali riciclati da:

- rifiuti speciali da demolizione edile
- rifiuti speciali industriali scorie

Rifiuti speciali da demolizione edile

In alternativa ai materiali naturali rispondenti alla classificazione C.N.R. U.N.I. 10006 può essere previsto, nella costruzione di rilevati, l'impiego di inerti provenienti da recupero e riciclaggio di materiali edili e di scorie industriali.

I rilevati con materiali riciclati potranno essere eseguiti previa autorizzazione della D.L. e solo quando vi sia la possibilità di effettuare un tratto completo di rilevato ben definito delimitato tra due sezioni trasversali e/o due piani quotati del corpo stradale.

E' comunque vietato l'utilizzo diretto dei materiali provenienti da demolizioni, costruzioni e scavi ai sensi del D.P.R. 10-9-1982 n. 915 e seguenti, e del Decreto Legislativo n° 22 del 5/02/1997 e successive modifiche ed integrazioni.

L'uso di tali materiali è consentito previo loro trattamento in appositi impianti di riciclaggio autorizzati secondo la normativa di Legge vigente.

Gli impianti di riciclaggio dovranno essere costituiti da distinte sezioni di trattamento, attraverso fasi meccanicamente e tecnologicamente interconesse di macinazione, vagliatura, selezione granulometrica e separazione dei materiali ferrosi, legnosi, e delle frazioni leggere, nonché delle residue impurità, per la selezione dei prodotti finali.

Gli impianti dovranno comunque essere dotati di adeguati dispositivi per la individuazione di materiali non idonei.

Dovrà essere preventivamente fornita alla D.L. oltre all'indicazione dell'impianto o degli impianti di produzione, con la specifica delle caratteristiche delle modalità operative riferite sia alla costanza di qualità del prodotto, sia ai sistemi di tutela da inquinanti nocivi, una campionatura significativa del materiale prodotto e le eventuali certificazioni relative a prove sistematiche fatte eseguire su materiali. Il materiale dovrà comunque rispondere alle specifiche tecniche di seguito riportate.

Il materiale fornito dovrà avere pezzatura non superiore a 71 mm. e dovrà rientrare nel fuso granulometrico di seguito riportato.

Serie Crivelli e Setacci UNI	passante % in peso
crivello 71	100
crivello 40	75 - 100
crivello 25	60 - 87
crivello 10	35 - 67
setaccio 2	15 - 40
setaccio 0.4	7 - 22
setaccio 0.075	2 - 15

I componenti lenticolari non dovranno essere (definite come in BU CNR n° 95/84) in quantità superiore al 30 %;

Devono essere assenti sostanze organiche (UNI 7466/75 II parte) o contaminanti, ai sensi del D.P.R. 10.9.1989 n° 915 pubblicato sulla G.U. n°343 del 15.12.82.

Prove di prequalificazione del materiale:

- a) determinazione della percentuale di rigonfiamento, che dovrà essere, secondo le modalità previste per la prova CBR (CNR UNI 10009), inferiore a 1%;
- b) prova di abrasione Los Angeles;. sarà ritenuto idoneo il materiale che subisce perdite inferiori al 40 % in peso;
- c) verifica della sensibilità al gelo (CNR 80/1988 Fasc. 4 art. 23 modificato), condotta sulla parte di aggregato passante al setaccio 38.1 e trattenuto al setaccio 9.51 (Los Angeles classe A); sarà ritenuto idoneo il materiale con sensibilità al gelo $G \le 30$;

Per la posa in opera si dovrà procedere alla determinazione dell'umidità ottimale di costipamento mediante procedimento AASHO modificato (CNR 69 - 1978) e per la stesa del materiale si dovrà procedere per strati di spessore compreso fra 15 a 30 cm., secondo le indicazioni della D.L., costipati per mezzo di rulli vibranti di tipo pesante.

Il materiale dovrà essere scaricato in cumuli estesi e immediatamente sottoposto ad una prima umidificazione, per evitare la separazione delle parti a diversa granulometria, non essendo presente di norma la umidità naturale.

L'umidità da raggiungersi non dovrà essere inferiore al 7-8 %.

Il materiale dovrà essere posto in opera mediante motolivellatore (Grader), o con altro mezzo idoneo, di adeguata potenza, in maniera da evitare comunque la separazione dei componenti di pezzatura diversa, e adeguatamente rullato a umidità ottimale.

Salvo diverse e più restrittive prescrizioni motivate in sede di progettazione dalla necessità di garantire la stabilità del rilevato, il modulo di deformazione al primo ciclo di carico su piastra (diametro 30 cm) (CNR 146 - 1992) dovrà risultare non inferiore a:

15 MPa: nell'intervallo compreso tra 0.15 - 0.25 da N/mm² sul piano di posa della fondazione della pavimentazione stradale sia in rilevato che in trincea;

Per i suddetti materiali valgono le stesse prescrizioni di grado di costipamento già specificato per le terre.

Rifiuti speciali industriali - scorie

Sempre in alternativa ai materiali rispondenti alla classificazione C.N.R. U.N.I. 10006 può essere previsto nella costruzione di rilevati l'impiego di materiali provenienti da scorie industriali - loppe d'altoforno, esclusivamente di nuova produzione e comunque non sottoposte a periodi di stoccaggio superiori ad un anno.

I rilevati con scorie industriali potranno essere eseguiti dietro ordine della D.L. e solo quando vi sia la possibilità di effettuare un tratto completo di rilevato ben definito delimitato tra due sezioni trasversali e/o due piani quotati del corpo stradale.

Le caratteristiche dei rifiuti debbono essere rispondenti alle prescrizioni del Decreto Legislativo n° 22 del 5/02/1997 e successive modifiche ed integrazione e quindi corrispondenti a tutte le prescrizioni contenute nelle direttive CEE, sui rifiuti in genere (CEE 91/156) e sui rifiuti pericolosi (CEE 91/689). In conformità dell'art. 4 del D.L. n°22 del 5/02/1997, viene favorito il reimpiego ed il riciclaggio di detti rifiuti previ accordi e convenzioni con i soggetti produttori interessati al reimpiego di dette materie, al fine di stabilire anche una positiva valutazione economica.

Tutti gli oneri inerenti alla gestione, sicurezza e garanzia della stabilità chimico-fisica del prodotto da utilizzare, rimangono a carico dell'imprenditore, così come tutti gli oneri e le incombenze derivanti dai permessi da richiedersi presso gli Enti preposti alla tutela dell'ambiente e del territorio.

Tali permessi sono rigorosamente prescritti, prima di procedere a qualsiasi utilizzazione ed impiego del materiale in esame.

E' riservata alla Direzione Lavori, la facoltà di adottare la parzializzazione del corpo del rilevato, destinando le scorie esclusivamente al nucleo centrale, ed utilizzando per le fasce laterali di spessore costante dell'ordine dei 2,0 m terre tradizionali.

Il materiale per essere impiegato nella formazione di strati di rilevato dovrà soddisfare i seguenti requisiti:

- la curva granulometrica, dovrà presentare un passante al setaccio 0,075 mm, non superiore al 10 %, ed un coefficiente di disuniformità maggiore o uguale a 7;
- l'attività del materiale (caratterizzata dal coefficiente α) dovrà essere compresa tra 20 e 40; l'attività $\alpha\Box$ risulta così definita:

coefficiente calcolato dividendo per 1000 il prodotto della superficie specifica (cm²/g), determinata con il permeabilimetro di Blain opportunamente adattato, per la friabilità intera come percentuale di elementi < 80 μ m, ottenuti dopo opportuna frantumazione (Mode operatoir LCPC: Measure du coefficient $\alpha\Box$ d'activé du latier granulé de heut fornean - Dunoid - Paris 1970).

• il contenuto naturale di acqua (umidità), deve essere <15%;

Il materiale verrà posto in opera mediante l'impiego di motolivellatrice (grader) in strati di spessore compreso tra i 15 e i 30 cm.

Nell'eventualità di una parzializzazione del corpo del rilevato i materiali di contronucleo verranno posti in opera con strati aventi medesimo spessore di quelli realizzati con loppa.

Quindi si procederà al costipamento dell'intero strato.

A compattazione avvenuta, tutti i materiali utilizzati per la realizzazione del singolo strato dovranno presentare una massa volumica non inferiore al 90% di quella massima individuata nelle prove di compattazione (CNR 69-1978), (CNR 22 - 1972).

Salvo diverse e più restrittive prescrizioni motivate in sede di progettazione dalla necessità di garantire la stabilità del rilevato, il modulo di deformazione al primo ciclo di carico su piastra (diametro 30 cm) (CNR 146 -1992) dovrà risultare non inferiore a:

50 MPa: nell'intervallo compreso tra 0.15 - 0.25 N/mm² sul piano di posa della fondazione della pavimentazione stradale in rilevato;

20 MPa: nell'intervallo compreso tra $0.05 - 0.15 \text{ N/mm}^2$ sui restanti strati del rilevato oltre 1.00 m al di sotto della pavimentazione stradale.

- Specifica di controllo

Disposizioni generali

La seguente specifica si applica ai vari tipi di rilevato costituenti l'infrastruttura stradale e precedentemente esaminati.

La documentazione di riferimento comprende tutta quella contrattuale e, più specificatamente, quella di progetto quale disegni, specifiche tecniche, ecc.; sono altresì comprese tutte le norme tecniche vigenti in materia.

L'Impresa, per poter essere autorizzata ad impiegare i vari tipi di materiali (misti lapidei, terre, calci, cementi, etc) prescritti dalle presenti Norme Tecniche, dovrà esibire alla D.L., prima dell'impiego, i relativi Certificati di Qualità rilasciati da un Laboratorio Ufficiale.

Tali certificati dovranno contenere tutti i dati relativi alla provenienza e alla individuazione dei singoli materiali o loro composizione, agli impianti o luoghi di produzione, nonché i dati risultanti dalle prove di laboratorio atte ad accertare i valori caratteristici richiesti per le varie categorie di lavoro o di fornitura in un rapporto a dosaggi e composizioni proposte.

I certificati che dovranno essere esibiti tanto se i materiali sono prodotti direttamente, quanto se prelevati da impianti, da cave, da stabilimenti anche se gestiti da terzi, avranno una validità biennale. I certificati dovranno comunque essere rinnovati ogni qualvolta risultino incompleti o si verifichi una variazione delle caratteristiche dei materiali, delle miscele o degli impianti di produzione.

La procedura delle prove di seguito specificata deve ritenersi come minima e dovrà essere infittita in ragione della discontinuità granulometrica dei materiali portati a rilevato e della variabilità nelle procedure di compattazione.

L'Impresa è obbligata comunque ad organizzare per proprio conto, con personale qualificato ed attrezzature adeguate, approvate dalla D.L., un laboratorio di cantiere in cui si procederà ad effettuare tutti gli ulteriori accertamenti di routine ritenuti necessari dalla D.L., per la caratterizzazione e l'impiego dei materiali.

La frequenza minima delle prove ufficiali sarà quella indicata nella allegata Tabella 2, la frequenza delle prove di cantiere sarà imposta dalle puntuali verifiche che il programma di impiego dei materiali , approvato preventivamente dalla D.L., vorrà accertare.

I materiali da impiegare a rilevato, sono caratterizzati e classificati secondo le Norme CNR-UNI 10006/63, e riportati nell'allegata Tabella 1.

La normativa di riferimento per esercitare i controlli conseguenti, sono indicati nel seguente prospetto:

CATEGORIE DI LAVORO E	CONTROLLI PREVISTI	NORMATIVA DI RIFERIMENTO
MATERIALI		
MOVIMENTI DI TERRA		D.M. 11.03.1988
		C.LL.PP. n.30483 del 24.09.1988
PIANI DI POSA DEI RILEVATI	Classificazione delle terre	C.N.RUNI 10006/63
	Grado di costipamento	B.U C.N.R. n.69
	Massa volumica in sito	B.U C.N.R. n.22
	CBR	CNR - UNI 10009
	Prova di carico su piastra	B.U C.N.R. n.146 A.XXVI
PIANI DI POSA DELLE	Classificazione delle terre	C.N.RUNI 10006/63
FONDAZIONI STRADALI IN	Grado di costipamento	B.U C.N.R. n.69
TRINCEA	Massa volumica in sito	B.U C.N.R. n.22
	CBR	CNR - UNI 10009
	Prova di carico su piastra	B.U C.N.R. n.146 A.XXVI
FORMAZIONE DEI RILEVATI	Classificazione delle terre	C.N.RUNI 10006/63
	Grado di costipamento	B.U C.N.R. n.69
	Massa volumica in sito	B.U C.N.R. n.22
	Prova di carico su piastra	B.U C.N.R. n.146 A.XXVI
	CBR	CNR - UNI 10009
	Impiego della calce	B.U C.N.R. n.36 A VII

Prove di laboratorio

Accertamenti preventivi:

Le caratteristiche e l'idoneità dei materiali saranno accertate mediante le seguenti prove di laboratorio:

- analisi granulometrica;
- determinazione del contenuto naturale d'acqua;
- determinazione del limite liquido e dell'indice di plasticità sull'eventuale porzione di passante al setaccio 0,4 UNI 2332 ;
- prova di costipamento con energia AASHO Modificata (CNR 69 -1978);

la caratterizzazione e frequenza delle prove è riportata in Tabella 2.

Prove di controllo in fase esecutiva

L'impresa sarà obbligata a prestarsi in ogni tempo e di norma periodicamente per le forniture di materiali di impiego continuo, alle prove ed esami dei materiali impiegati e da impiegare, inviando i campioni di norma presso un Laboratorio Ufficiale.

I campioni verranno prelevati in contraddittorio.

Degli stessi potrà essere ordinata la conservazione in luogo indicato dalla D.L. previa apposizione dei sigilli e firme del Direttore dei Lavori e dell'Impresa e nei modo più adatti a garantire l'autenticità e la conservazione.

I risultati ottenuti in tali Laboratori saranno i soli riconosciuti validi dalle due parti ; ad essi si farà esclusivo riferimento a tutti gli effetti delle presenti Norme Tecniche.

La frequenza e le modalità delle prove sono riportate nella Tabella 2.

Prove di controllo sul piano di posa

Sul piano di posa del rilevato nonché nei tratti in trincea si dovrà procedere, prima dell'accettazione, al controllo delle caratteristiche di deformabilità, mediante prova di carico su piastra (CNR 146-1992) e dello stato di addensamento (massa volumica in sito, CNR 22 - 1972). La frequenza delle prove è stabilita in una prova ogni 2000 mq, e comunque almeno una per ogni corpo di rilevato o trincea.

Le prove andranno distribuite in modo tale da essere sicuramente rappresentative dei risultati conseguiti in sede di preparazione dei piani di posa, in relazione alle caratteristiche dei terreni attraversati.

La Direzione Lavori potrà richiedere, in presenza di terreni "instabili", l'esecuzione di prove speciali (prove di carico previa saturazione, ecc.).

Il controllo della strato anticapillare sarà effettuato con le stesse frequenze per i singoli strati del rilevato, e dovrà soddisfare alle specifiche riportate al paragrafo relativo a "Strato granulare anticapillare".

TABELLA 2

Frequenza delle prove (almeno 1 ogni m³____)

TIPO DI PROVA	RILEVATI STRADALI	[TERRE RINFORZATE			
	Corpo del	rilevato	vato Ultimo strato di cm					
	primi 5000 m ³	successi vi m ³	primi 5000 m ³	successi vi m ³	primi 5000 m ³	successivi m ³		
Classificazione CNR-UNI 10006/63	500	10000	500	2500	500	5000		
Costipamento AASHO Mod. CNR	500	10000	500	2500	500	5000		
Massa volumica in sito B.U. CNR n.22	250	5000	250	1000	250	1000		
Prova di carico su piastra CNR 9 - 67	*	*	500	2000	1000	5000		
Controllo umidità	**	**	**	**	**	**		
Resistività	*	*	*	*	500	5000		
рН	*	*	*	*	500	5000		
Solfati e cloruri	*	*	*	*	5000	5000		

^{*} Su prescrizione delle Direzione Lavori

^{**} Frequenti e rapportate alle condizioni meteorologiche locali e alle caratteristiche di omogeneità dei materiali portati a rilevato

TABELLA 1 FORMAZIONE DEL RILEVATO - GENERALITÀ, CARATTERISTICHE E REQUISITI DEI MATERIALI

Prospetto I - Classificaz	Prospetto I - Classificazione delle terre												
Classificazione generale	<u> </u>						Terre limo - argillose Frazione passante allo staccio 0,075 UNI 2332> 35%					Torbe e terre organiche palustri	
Gruppo	A 1		A 3	A 2			A 4	A 5	A 6	A 7		A 8	
Sottogruppo	A 1-a	A1-b		A2-4	A2-5	A2-6	A2-7				A7-5	A7-6	
Analisi granulometrica . Frazione passante allo staccio 2 UNI 2332 % 0,4 UNI 2332 % 0,075 UNI 2332 %	≤50 ≤ 30 ≤15	 ≤ 50 ≤25	 > 50 ≤10	<u>—</u> ≤ 35	<u>—</u> ≤35	<u>—</u> ≤35	<u>—</u> ≤ 35	<u> </u>	—— > 35	- - - - - - - - 3 5		 > 35	

Caratteristiche della frazione passante allo staccio 0,4 UNI2332 Limite liquido Indice di plasticità	<u></u>	N.P.	-	> 40 ≤ 10max	≤ 40 > 10	> 40 > 10	≤ 40 ≤ 10	> 40 ≤ 10	> 10	> 40 > 10 (IP \le IL-	> 40 > 10 (IP>LL- 30)	
Indice di gruppo	0	0	0		≤ 4		≤ 8	≤ 12	≤ 16	≤ 20		
Tipi usuali dei materiali caratteristici costituenti il gruppo			Ghiaia o sabbia limosa o argillosa			Limi poco compress ibili	poco	Argille poco compre ssibili	fortem ente compre	Argille fortement e compressi bili fortement e plastiche	Torbe di recente o remota formazione, detriti organici di origine palustre	
Qualità portanti quale terreno di sottofondo in assenza di gelo	Da eccellente a buono)					Da medio	cre a sca	dente			Da scartare come sottofondo
Azione del gelo sulle qualità portanti del terreno di sottofondo	Nessuna o lieve		Media				Molto elev	vata	Med	lia Ele vat a	Media	

Ritiro o rigonfiamento	Nullo		Nullo o lieve	Lieve o medio	Elevato		Molto elevato	
Permeabilità	Elevata		Media o scarsa		Scarsa o nulla			
Identificazione dei terreni in sito	Facilmente individuabile	Incoerent i allo	La maggior parte dei granuli sono individuabili ad occhio nudo - Aspri a tatto - Una tenacità media o elevata allo stato asciutto indica la presenza di argilla	prova di scuotimento* - Polverulenti o poco tenaci allo stato	di scuoti allo sta Facilmen bastoncir umido	mento ato a ite mo	asciutto - dellabili in	Fibrosi di color bruno o nero -

^{*} Prova di cantiere che può servire a distinguere i limi dalle argille . Si esegue scuotendo nel palmo della mano un campione di terra bagnata e comprimendolo successivamente fra le dita. La terra reagisce alla prova se, dopo lo scuotimento, apparirà sulla superficie un velo lucido di acqua libera, che comparirà comprimendo il campione fra le dita.

Controllo dei materiali impiegati nel miglioraento e nella stabilizzazione a calce e/o cemento

La normativa di riferimento ed i controlli relativi a detti materiali sono fissati nelle specifiche già stabilite per i rilevati, ed alle quali si rimanda.

Il trattamento a calce e/o cemento richiede particolare cura nelle varie fasi della lavorazione. In caso contrario gli esiti positivi riscontrati in laboratorio, potrebbero essere decisamente compromessi.

Prove di laboratorio

Le caratteristiche e l'idoneità dei materiali da trattare saranno accertate mediante le seguenti prove di laboratorio:

- analisi granulometrica (una almeno ogni 1.000 m³ di materiale);
- determinazione del contenuto naturale d'acqua (una ogni giorno);
- determinazione del limite liquido e dell'indice di plasticità sull'eventuale porzione di passante al setaccio 0,4 UNI 2332 (una ogni giorno);

Sul materiale trattato, verranno effettuate le seguenti prove:

- Polverizzazione del materiale trattato (una ogni 500 m²)
- CBR (dopo 7 giorni di stagionatura e dopo imbibizione di 4 giorni in acqua) (una ogni 500 m²)

Prove in sito

Le caratteristiche dei materiali posti in opera saranno inoltre accertate mediante le seguenti prove in sito:

- Massa volumica della terra in sito (una ogni 1000 m³)
- Prova di carico con piastra circolare (una ogni 1000 m³);

Prove di controllo sul piano di posa

Le prove di controllo da eseguire sul piano di posa dei rilevati, sottoposto a stabilizzazione con calce e cemento, avranno la frequenza di una prova ogni 1000 m².

Le prove andranno distribuite in modo tale da essere sicuramente rappresentative dei risultati conseguiti in sede di preparazione dei piani di posa, in relazione alle caratteristiche dei terreni attraversati.

Controllo dei materiali riciclati da rifiuti speciali da demolizoine edile

La normativa di riferimento ed i controlli relativi a detti materiali sono fissati nelle specifiche già stabilite per i rilevati, ed alle quali si rimanda

Prove di laboratorio

Le caratteristiche e l'idoneità dei materiali da trattare saranno accertate mediante le seguenti prove di laboratorio:

- determinazione dell'umidità ottimale di costipamento mediante prova di costipamento con procedimento AASHO modificato (CNR BU n° 69);
- determinazione della percentuale di rigonfiamento secondo le modalità previste per la prova CBR (CNR UNI 10009);
- verifica della sensibilità al gelo (CNR BU n° 80/80), condotta sulla parte di aggregato passante al setaccio 38.1 e trattenuto al setaccio 9.51 (Los Angeles classe A);

• prova di abrasione Los Angeles; sarà ritenuto idoneo il materiale che subisce perdite inferiori al 40 % in peso;

Sarà effettuata una prova ogni 500 m³ di materiale da porre in opera.

Prove in sito

Le caratteristiche dei materiali saranno accertate mediante le seguenti prove in sito:

- Massa volumica della terra in sito;
- Prova di carico con piastra circolare ;

Sarà effettuata una prova ogni 500 m³ di materiale posto in opera.

Controllo dei materiali riciclati speciali industriali – scorie

La normativa di riferimento ed i controlli relativi a detti materiali sono fissati nelle specifiche già stabilite per i rilevati, ed alle quali si rimanda.

Prove di laboratorio

Le caratteristiche e l'idoneità dei materiali saranno accertate mediante le seguenti prove di laboratorio:

- determinazione dell'umidità ottimale di costipamento mediante prova di costipamento con procedimento AASHO modificato (CNR BU n° 69);
- determinazione del contenuto naturale di acqua (umidità);
- analisi granulometrica;
- determinazione dell'attività;

La determinazione del contenuto naturale di acqua (umidità) e del tenore di acqua, la granulometria e l'attività verranno determinate ogni 200 t di materiale.

Prove in sito

Le caratteristiche dei materiali saranno accertate mediante le seguenti prove in sito:

- Massa volumica della terra in sito;
- Prova di carico con piastra circolare ;

Sarà effettuata una prova ogni 500 m³ di materiale posto in opera.

Telo Geotessile "tessuto non tessuto"

Lo strato di geotessile da stendere sul piano di posa del rilevato dovrà essere del tipo non tessuto in polipropilene .

Il geotessile dovrà essere del tipo "a filo continuo", prodotto per estrusione del polimero.

Dovrà essere composto al 100% da polipropilene di prima scelta (con esclusione di fibre riciclate), agglomerato con la metodologia dell'agugliatura meccanica, al fine di evitare la termofusione dei fili costituenti la matrice del geotessile.

Non dovranno essere aggiunte, per la lavorazione, resine o altre sostanze collanti.

Caratteristiche tecniche	POLIPROPILENE
Massa volumica (g/cm ³⁾	0,90
Punto di rammollimento (K)	413
Punto di fusione (K)	443 ÷ 448
Punto di umidità % (al 65% di umidità	0,04
relativa)	
Resistenza a trazione (N/5cm)	1900

Il geotessile dovrà essere imputrescibile, resistente ai raggi ultravioletti, ai solventi, alle reazioni chimiche che si instaurano nel terreno, all'azione dei microrganismi ed essere antinquinante.

Dovrà essere fornito in opera in rotoli di larghezza la più ampia possibile in relazione al modo d'impiego.

La campionatura del materiale dovrà essere fatta secondo la Norma UNI 8279/Parte 1, intendendosi per N l'unità elementare di un rotolo.

I prelievi dei campioni saranno eseguiti a cura dell'Impresa sotto il controllo della Direzione Lavori; le prove dovranno essere effettuate presso Laboratori qualificati, preliminarmente su materiali approvvigionati in cantiere, prima del loro impiego; successivamente, su materiali prelevati durante il corso dei lavori. La qualificazione del materiale sarà effettuata mediante le prove previste dalle norme UNI e dai B.U. del CNR n° 142/92, n° 143/92, n° 144/92 e n° 145/92, riportate nella seguente tabella:

Campionatura CARATTERISTICA	RIFERIMENTO
(per N deve intendersi il rotolo o la pezza)	UNI 8279/1
Peso, in g/m ²	UNI 5114
Spessore, in mm	UNI 8279/2
Resistenza a trazione su striscia di cm 5, in N	UNI 8639
Allungamento, in %	UNI 8639
Lacerazione, in N	UNI 8279/9
Resistenza alla perforazione con il metodo della sfera, MPa	UNI 8279/11
Punzonamento, in N	UNI 8279/14
Permeabilità radiale all'acqua, in cm/s	UNI 8279/13
Comportamento nei confronti di batteri e funghi	UNI 8986
Creep nullo al 25% del carico di rottura ed un allungamento sotto carico di esercizio pari al 2%-9%	
Diametro di filtrazione, espresso in micron, corrispondente a quello del 95%	
in peso degli elementi di terreno che hanno attraversato il geotessile,	
determinato mediante filtrazione idrodinamica	

Dalle prove dovranno risultare soddisfatti i seguenti requisiti:

REQUISITO	VALORE DI RIFERIMENTO
peso (UNI 5114)	$\geq 300 \text{ g/m}^2$
resistenze a trazione su striscia di cm 5 (UNI 8639)	> 19 kN
allungamento (UNI 8639)	> 60%
lacerazione (UNI 8279/9)	> 0,5 kN/m
punzonamento (UNI 8279/14)	> 3,1 kN
permeabilità radiale all'acqua alla pressione di 0,002 MPa	> 0,8 cm/s
(UNI 8279/13)	

dimensione della granulometria passante per filtrazione idrodinamica,	< 100 μm
corrispondente a quella del 95% in peso degli elementi di terreno che	
attraversano il geotessile	

Qualora anche da una sola delle prove di cui sopra risultassero valori inferiori a quelli stabiliti, la partita verrà rifiutata e l'impresa dovrà allontanarla immediatamente dal cantiere.

La Direzione Lavori, a suo insindacabile giudizio, potrà richiedere ulteriori prove preliminari o prelevare in corso d'opera campioni di materiali da sottoporre a prove presso Laboratori qualificati.

Il piano di stesa del geotessile dovrà essere perfettamente regolare. Dovrà essere curata la giunzione dei teli mediante sovrapposizione di almeno 30 cm nei due sensi longitudinale e trasversale.

I teli non dovranno essere in alcun modo esposti al diretto passaggio dei mezzi di cantiere prima della loro totale copertura con materiale da rilevato per uno spessore di almeno 30 cm.

Controllo scavi

Nel corso dei lavori, al fine di verificare la rispondenza della effettiva situazione geotecnica-geomeccanica con le ipotesi progettuali, la D.L., in contraddittorio con l'impresa, dovrà effettuare la determinazione delle caratteristiche del terreno o roccia sul fronte di scavo.

a) Prove di laboratorio

Le caratteristiche dei materiali saranno accertate mediante le seguenti prove di laboratorio:

Terre:

- analisi granulometrica;
- determinazione del contenuto naturale di acqua;
- determinazione del limite liquido e dell'indice di plasticità, nell'eventuale porzione di passante al setaccio 0,4 UNI 2332;
- eventuale determinazione delle caratteristiche di resistenza al taglio.

Rocce:

• resistenza a compressione monoassiale;

In presenza di terreni dal comportamento intermedio tra quello di una roccia e quello di una terra, le suddette prove potranno essere integrate al fine di definire con maggior dettaglio la reale situazione geotecnica. La frequenza delle prove dovrà essere effettuata come segue :

- ogni 500 m³ di materiale scavato e ogni 5 m di profondità dello scavo;
- in occasione di ogni cambiamento manifesto delle caratteristiche litologiche e/o geomeccaniche;
- ogni qualvolta richiesto dalla D.L..

b) Prove in sito

Terre:

si dovrà rilevare l'effettivo sviluppo della stratificazione presente, mediante opportuno rilievo geologicogeotecnico che consenta di identificare le tipologie dei terreni interessati, con le opportune prove di identificazione.

Rocce:

si dovrà procedere al rilevamento geologico-geomeccanico, al fine di identificare la litologia presente e la classe geomeccanica corrispondente mediante l'impiego di opportune classificazioni.

Si dovranno effettuare tutte le prove necessarie allo scopo.

Si dovrà in ogni caso verificare la rispondenza delle pendenze e delle quote di progetto, con la frequenza necessaria al caso in esame.

Art. 4 - Demolizioni

Murature e fabbricati

Le demolizioni di fabbricati e di murature di qualsiasi genere (armate e non, in precompresso), potranno essere integrali o in porzioni a sezione obbligata, eseguite in qualsiasi dimensione anche in breccia, entro e fuori terra, a qualsiasi altezza.

Verranno impiegati i mezzi previsti dal progetto e/o ritenuti idonei dalla Direzione Lavori:

- scalpellatura a mano o meccanica;
- martello demolitore:
- agenti demolitori non esplosivi ad azione chimica con espansione lenta e senza propagazione dell'onda d'urto.

Le demolizioni dovranno essere eseguite con ordine e con le necessarie precauzioni in modo da prevenire qualsiasi infortunio al personale addetto, evitando inoltre tassativamente di gettare dall'alto i materiali i quali dovranno invece essere trasportati o guidati in basso.

Inoltre l'impresa dovrà provvedere, a sua cura e spese, ad adottare tutti gli accorgimenti tecnici per puntellare e sbatacchiare le parti pericolanti e tutte le cautele al fine di non danneggiare le strutture sottostanti e le proprietà di terzi.

L'Impresa sarà pertanto responsabile di tutti i danni che una cattiva conduzione nelle operazioni di demolizioni potessero arrecare alle persone, alle opere e cose, anche di terzi.

Nel caso di demolizioni parziali potrà essere richiesto il trattamento con il getto di vapore a 373 K ed una pressione di 0,7-0,8 MPa per ottenere superfici di attacco pulite e pronte a ricevere i nuovi getti; i ferri dovranno essere tagliati, sabbiati e risagomati secondo le disposizioni progettuali.

Per le demolizioni da eseguirsi su strada in esercizio, l'impresa dovrà adottare anche tutte le precauzioni e cautele atte ad evitare ogni possibile danno all'utenza e concordare con l'ente gestore del tronco, tramite la Direzione Lavori, le eventuali esclusioni di traffico che potranno avvenire anche in ore notturne e in giorni determinati.

In particolare, la demolizione delle travi di impalcati di opere d'arte o di impalcati di cavalcavia anche a struttura mista, su strade in esercizio, dovrà essere eseguita fuori opera, previa separazione dalle strutture esistenti, sollevamento, rimozione e trasporto di tali porzioni in apposite aree entro le quali potranno avvenire le demolizioni.

I materiali di risulta resteranno di proprietà dell'Impresa la quale potrà reimpiegare quelli ritenuti idonei dalla Direzione Lavori fermo restando l'obbligo di allontanarli e di trasportare a discarica quelli rifiutati.

Idrodemolizioni

La idrodemolizione di strati di conglomerato cementizio su strutture di ponti e viadotti dovrà essere effettuata con l'impiego di idonee attrezzature atte ad assicurare getti d'acqua a pressione modulabile fino a 1500 bar, con portate fino a 300 l/min, regolabili per quanto attiene la velocità operativa.

Gli interventi dovranno risultare selettivi ed asportare gli strati di conglomerato degradati senza intaccare quelli aventi resistenza uguale o superiore alla minima indicata in progetto.

L'Impresa dovrà provvedere all'approvvigionamento dell'acqua occorrente per la demolizione del materiale e la pulizia della superficie risultante.

Le attrezzature impiegate dovranno essere sottoposte alla preventiva approvazione della Direzione Lavori; dovranno essere dotate di sistemi automatici di comando e controllo a distanza, nonché di idonei sistemi di sicurezza contro la proiezione del materiale demolito, dovendo operare anche in presenza di traffico.

Dovranno rispondere inoltre alle vigenti norme di Legge in materia di prevenzione infortuni ed igiene del lavoro vigenti alle quali l'impresa dovrà uniformarsi in sede operativa.

Demolizione di pavimentazione o massicciata stradale in conglomerato bituminoso

La demolizione della pavimentazione in conglomerato bituminoso per l'intero spessore o per parte di esso dovrà essere effettuata con idonee attrezzature munite di frese a tamburo funzionanti a freddo, con nastro caricatore per il carico del materiale di risulta.

Tali attrezzature dovranno essere preventivamente approvate dalla Direzione Lavori relativamente a caratteristiche meccaniche, dimensioni e capacità produttiva; il materiale fresato dovrà risultare idoneo, ad esclusivo giudizio della stessa Direzione Lavori, per il reimpiego nella confezione di conglomerati bituminosi.

La demolizione dovrà rispettare rigorosamente gli spessori previsti in progetto o prescritti dalla Direzione Lavori e non saranno pagati maggiori spessori rispetto a quelli previsti o prescritti.

Se la demolizione interessa uno spessore inferiore a 15 cm, potrà essere effettuata con un solo passaggio di fresa; per spessori superiori a 15 cm si dovranno effettuare due passaggi di cui il primo pari ad 1/3 dello spessore totale, avendo cura di formare longitudinalmente sui due lati dell'incavo un gradino tra il primo ed il secondo strato demolito di almeno 10 cm.

Le superfici scarificate dovranno risultare perfettamente regolari in ogni punto, senza discontinuità che potrebbero compromettere l'aderenza dei nuovi strati; i bordi delle superfici scarificate dovranno risultare verticali, rettilinei e privi di sgretolature.

La pulizia del piano di scarifica dovrà essere effettuata con idonee attrezzature munite di spazzole rotanti e dispositivo aspiranti in grado di dare il piano depolverizzato.

Nel caso di pavimentazione su impalcati di opere d'arte, la demolizione dovrà eseguirsi con tutte le precauzioni necessarie a garantire la perfetta integrità della sottostante soletta; in questi casi potrà essere richiesta la demolizione con scalpello a mano con l'ausilio del martello demolitore.

Solamente quando previsto in progetto e in casi eccezionali si potrà eseguire la demolizione della massicciata stradale, con o senza conglomerato bituminoso, anche su opere d'arte, con macchina escavatrice od analoga e, nel caso in cui il bordo della pavimentazione residua debba avere un profilo regolare, per il taglio perimetrale si dovrà fare uso della sega clipper.

Art. 5 - Murature e cordoli

Murature

Con tale denominazione si indicheranno le seguenti possibili tipologie:

• murature ed elementi di calcestruzzo;

CONGLOMERATI CEMENTIZI SEMPLICI E ARMATI

Nell'esecuzione delle opere in cemento armato o precompresso l'Appaltatore dovrà attenersi strettamente a tutte le norme contenute nel D.M. 14 gennaio 2008, Norma tecniche per le costruzioni, e alle norme UNI applicabili vigenti.

Per le opere in zona sismica l'Appaltatore dovrà attenersi alle prescrizioni di cui al DM 14 gennaio 2008 ed alle norme tecniche vigenti in esso previste.

Tutte le opere in cemento armato facenti parte dell'opera appaltata saranno eseguite in base ai calcoli di progetto, secondo le indicazioni delle tavole grafiche ad esso allegate e secondo le indicazioni della DL.

L'esame e la verifica da parte della Direzione dei Lavori dei progetti delle varie strutture in cemento armato non esonerano in alcun modo l'appaltatore dalle responsabilità a lui derivanti per legge e per le precise pattuizioni del contratto, restando contrattualmente stabilito che, malgrado i controlli di ogni genere eseguiti dalla D.L. nell'esclusivo interesse dell'Amministrazione, l'Appaltatore stesso rimane unico e completo responsabile delle opere per la qualità dei materiali e la loro esecuzione; di conseguenza egli dovrà rispondere degli inconvenienti che avessero a verificarsi, di qualunque natura, importanza e conseguenza essi potessero risultare.

RESISTENZA DEI CONGLOMERATI CEMENTIZI

Per ciascuna determinazione in corso d'opera delle resistenze caratteristiche a compressione dei conglomerati cementizi, dovranno essere eseguite due serie di prelievi da effettuarsi in conformità alle Norme Tecniche emanate in applicazione dell'art. 21 della Legge 1086 del 5/11/1971 (D.M. del in vigore).

I prelievi, eseguiti in contraddittorio con l'Impresa, verranno effettuati separatamente per ogni opera, per ogni singola parte di essa e per ogni tipo e classe di conglomerato cementizio previsti negli elaborati progettuali.

Per ogni prelievo eseguito dovranno essere confezionati minimo 4 provini, per le strutture in c.a. e minimo 6 provini per le strutture in c.a.p..

Di tali operazioni, eseguite a cura e spese dell'Impresa e sotto il controllo della Direzione Lavori, secondo le Norme UNI vigenti, verranno redatti appositi verbali numerati progressivamente e controfirmati dalle parti.

I provini, contraddistinti col numero progressivo del relativo verbale di prelievo, verranno custoditi a cura e spese dell'Impresa in locali ritenuti idonei dalla Direzione Lavori, previa apposizione di sigilli e firma del Direttore dei Lavori, o del Responsabile Controllo Qualità Materiali da lui incaricato e dell'Impresa, nei modi più adatti a garantire la autenticità e la corretta stagionatura (UNI 6127).

Con i provini della prima serie (coppia) di prelievi, verranno effettuate presso i Laboratori della Direzione Lavori, alla presenza dell'Impresa, le prove atte a determinare le resistenze caratteristiche.

Potranno inoltre essere confezionati e sottoposte a prova ulteriori quantità di provini secondo le disposizioni che al riguardo saranno impartite dalla Direzione Lavori. I risultati delle prove di rottura, effettuati sui provini della prima serie (coppia) di prelievi, saranno presi a base per la contabilizzazione provvisoria dei lavori, a condizione che il valore della resistenza caratteristica a compressione a 28 d di maturazione accertato per ciascun tipo e classe di calcestruzzo, non risulti inferiore a quello della classe indicata negli elaborati progettuali.

Nel caso che, la resistenza caratteristica ricavata dalle prove della prima serie di prelievi, risultasse essere inferiore a quella prevista, la Direzione Lavori, nell'attesa dei risultati ufficiali, potrà a suo insindacabile giudizio ordinare la sospensione dei getti dell'opera interessata senza che l'Impresa possa accampare per questo alcun diritto.

I provini della seconda serie di prelievi dovranno essere sottoposti a prove presso Laboratori Ufficiali.

Se dalle prove eseguite presso Laboratori Ufficiali, sui provini della seconda serie di prelievi, risultasse un valore (fck o Rck) inferiore di non più del 10% rispetto a quello della classe indicata negli elaborati

progettuali, la Direzione Lavori, d'intesa con il Progettista, effettuerà una determinazione sperimentale della resistenza meccanica del conglomerato cementizio in opera e successivamente una verifica della sicurezza. Nel caso che tale verifica dia esito positivo, il conglomerato cementizio verrà accettato, ma verrà applicata una penale. Qualora, poi, la resistenza caratteristica risultasse minore di quella richiesta di più del 10%, l'Impresa sarà tenuta, a sua totale cura e spese, alla demolizione e rifacimento dell'opera oppure all'adozione di quei provvedimenti che, proposti dalla stessa, per diventare operativi dovranno essere formalmente approvati dal Progettista. Nulla sarà dovuto all'Impresa se la resistenza (fck o Rck) risulterà maggiore a quella indicata negli elaborati progettuali.

Saranno a carico dell'Impresa tutti gli oneri relativi alle prove di Laboratorio, sia effettuate presso i laboratori della Direzione Lavori, sia presso i Laboratori Ufficiali, comprese le spese per il rilascio dei certificati.

Il D.L. potrà, a suo insindacabile giudizio, e a complete spese dell'Appaltatore, disporre tutte le prove che riterrà necessarie, e in particolare le seguenti:

- a) prova del cono di cui all'App. E della UNI 6394-79;
- b) prova del dosaggio di cemento di cui alla UNI 6393-72 e alla UNI 6394-69;
- c) prova del contenuto d'aria di cui alla UNI 6395-72;
- d) prova del contenuto d'acqua;
- e) prova di omogeneità in caso di trasporto con autobetoniera;
- f) prova di resistenza a compressione su campioni cilindrici prelevati con carotaggio da strutture già stagionate;
- g) prova di resistenza a compressione con sclerometro.
- h) prove di pull-out

POSA IN OPERA

La posa in opera sarà eseguita con ogni cura ed a regola d'arte, dopo aver preparato accuratamente e rettificati i piani di posa, le casseforme, i cavi da riempire e dopo aver posto le armature metalliche.

I getti dovranno risultare perfettamente conformi ai particolari costruttivi di progetto ed alle prescrizioni della Direzione Lavori.

Si avrà cura che in nessun caso si verifichino cedimenti dei piani d'appoggio e delle pareti di contenimento.

Le casseforme dovranno essere atte a garantire superfici di getto regolari ed a perfetta regola d'arte; in tal senso l'Impresa provvederà, a sua cura e spese, alla posa d'opportuni ponteggi ed impalcature, previa presentazione ed approvazione da parte della Direzione Lavori dei relativi progetti.

Dovranno essere impiegati prodotti disarmanti aventi i requisiti di cui alle specifiche della Norma UNI 8866; le modalità d'applicazione dovranno essere quelle indicate dal produttore evitando accuratamente aggiunte eccessive e ristagni di prodotto sul fondo delle casseforme.

La Direzione Lavori eseguirà un controllo della quantità di disarmante impiegato in relazione allo sviluppo della superficie di casseforme trattate.

Dovrà essere controllato inoltre che il disarmante impiegato non macchi o danneggi la superficie del conglomerato.

A tale scopo saranno usati prodotti efficaci per la loro azione specifica escludendo i lubrificanti di varia natura. Dal giornale lavori del cantiere dovrà risultare la data d'inizio e di fine dei getti e del disarmo.

Se il getto dovesse essere effettuato durante la stagione invernale, l'Impresa dovrà tenere registrati giornalmente i minimi di temperatura desunti da un apposito termometro esposto nello stesso cantiere di lavoro.

Il conglomerato cementizio sarà posto in opera e assestato con ogni cura in modo che le superfici esterne si presentino lisce e compatte, omogenee e perfettamente regolari ed esenti anche da macchie o chiazze.

Per la finitura superficiale delle solette è prescritto l'uso di staggie vibranti o attrezzature equivalenti; la regolarità dei getti dovrà essere verificata con un'asta rettilinea della lunghezza di 2,00 m, che in ogni punto dovrà aderirvi uniformemente nelle due direzioni longitudinale e trasversale; saranno tollerati soltanto scostamenti inferiori a 10 mm.

Eventuali irregolarità o sbavature dovranno essere asportate mediante bocciardatura e i punti incidentalmente difettosi dovranno essere ripresi accuratamente con malta cementizia a ritiro compensato immediatamente dopo il disarmo; ciò qualora tali difetti o irregolarità siano contenuti nei limiti che la Direzione Lavori, a suo insindacabile giudizio, riterrà tollerabili fermo restando in ogni caso che le suddette operazioni ricadranno esclusivamente e totalmente a carico dell'Impresa.

Quando le irregolarità siano mediamente superiori a 10 mm, la Direzione Lavori ne imporrà la regolarizzazione a totale cura e spese dell'Impresa mediante uno strato di materiali idonei che, secondo i casi e ad insindacabile giudizio della Direzione Lavori potrà essere costituito da:

- malte o betoncini reoplastici a base cementizia a ritiro compensato;
- conglomerato bituminoso del tipo usura fine, per spessori non inferiori a 15 mm.

Eventuali ferri (filo, chiodi, reggette) che con funzione di legatura di collegamento casseri od altro, dovessero sporgere da getti finiti, dovranno essere tagliati almeno 0,5 cm sotto la superficie finita e gli incavi risultanti saranno accuratamente sigillati con malta fine di cemento espansivo.

È poi prescritto che, dovunque sia possibile, gli elementi dei casseri siano fissati nell'esatta posizione prevista utilizzando fili metallici liberi di scorrere entro tubetti di materiale PVC o simile, di colore grigio, destinati a rimanere incorporati nel getto di conglomerato cementizio, armato o non armato. Lo scarico del conglomerato dal mezzo di trasporto dovrà avvenire con tutti gli accorgimenti atti ad evitare la segregazione.

A questo scopo il conglomerato dovrà cadere verticalmente al centro della cassaforma e sarà steso in strati orizzontali di spessore limitato e comunque non superiore a 50 cm misurati dopo la vibrazione.

È vietato scaricare il conglomerato in un unico cumulo e distenderlo con l'impiego del vibratore; è altresì vietato lasciar cadere dall'alto il conglomerato cementizio per un'altezza superiore ad un metro; se necessario si farà uso di tubi getto o si getterà mediante pompaggio.

Gli apparecchi, i tempi e le modalità per la vibrazione saranno quelli preventivamente approvati dalla Direzione Lavori.

L'Impresa dovrà porre particolare cura nella realizzazione dei giunti di dilatazione o contrazione di tipo impermeabile (waterstop), o giunti speciali aperti, a cunei, secondo le indicazioni di progetto.

Tra le successive riprese di getto non dovranno aversi distacchi o discontinuità o differenze d'aspetto e la ripresa potrà effettuarsi solo dopo che la superficie del getto precedente sia stata accuratamente pulita, lavata e spazzolata; gli eventuali giunti di costruzione saranno sigillati, così come previsto nelle presenti Norme Tecniche.

La Direzione Lavori avrà la facoltà di prescrivere, ove e quando lo ritenga necessario, che i getti siano eseguiti senza soluzione di continuità così da evitare ogni ripresa, anche se ciò comporta che il lavoro debba essere condotto a turni, durante le ore notturne ed anche in giornate festive, senza che all'Impresa non spetti nulla di più di quanto previsto contrattualmente.

In alternativa la Direzione Lavori potrà prescrivere l'adozione di riprese di getto di tipo monolitico.

Queste saranno realizzate mediante spruzzatura d'additivo ritardante sulla superficie del conglomerato cementizio fresco; dopo che la massa del conglomerato sarà indurita si provvederà all'eliminazione della malta superficiale non ancora rappresa, mediante getto d'acqua, ottenendo una superficie di ripresa scabra, sulla quale si potrà disporre all'atto della ripresa di getto una malta priva di ritiro immediatamente prima del nuovo getto di conglomerato cementizio.

Quando il conglomerato cementizio deve essere gettato in presenza d'acqua, si dovranno adottare gli accorgimenti approvati dalla Direzione Lavori, necessari per impedire che l'acqua lo dilavi e ne pregiudichi la normale maturazione.

La temperatura del conglomerato cementizio all'atto del getto dovrà essere compresa tra 278 e 303 K.

STAGIONATURA E DISARMO

Prevenzione delle fessure da ritiro plastico

A getto ultimato dovrà essere curata la stagionatura dei conglomerati cementizi in modo da evitare un rapido prosciugamento delle superfici esposte all'aria dei medesimi e la conseguente formazione di fessure da ritiro plastico, usando tutte le cautele ed impiegando i mezzi più idonei allo scopo, fermo restando che il sistema proposto dall'Impresa dovrà essere approvato dalla Direzione Lavori.

A questo fine le superfici del conglomerato cementizio non protette dalle casseforme dovranno essere mantenute umide il più a lungo possibile e comunque per almeno 7 d, sia per mezzo di prodotti antievaporanti (curing), da applicare a spruzzo subito dopo il getto, sia mediante continua bagnatura, sia con altri sistemi idonei.

I prodotti antievaporanti (curing) ed il loro dosaggio dovranno essere approvati dalla Direzione Lavori.

Le loro caratteristiche dovranno essere conformi a quanto indicato nella Norma UNI 8656 : tipi 1 e 2.

La costanza della composizione dei prodotti antievaporanti dovrà essere verificata, a cura della Direzione Lavori ed a spese dell'Impresa, al momento del loro approvvigionamento.

In particolare per le solette, che sono soggette all'essiccamento prematuro ed alla fessurazione da ritiro plastico che ne deriva, è fatto obbligo di applicare sistematicamente i prodotti antievaporanti di cui sopra.

È ammesso in alternativa l'impiego, anche limitatamente ad uno strato superficiale di spessore non minore di 20 cm, di conglomerato cementizio rinforzato da fibre di resina sintetica di lunghezza da 20 a 35 mm, di diametro d'alcuni millesimi di millimetro aggiunti nella betoniera e dispersi uniformemente nel conglomerato cementizio, in misura di 0,5÷1,5 kg/m³.

Nel caso che sulle solette si rilevino manifestazioni di ritiro plastico con formazione di fessure d'apertura superiore a 0,3 mm, l'Impresa dovrà provvedere a sua cura e spese alla demolizione ed al rifacimento delle strutture danneggiate.

Disarmo e scasseratura

Durante il periodo della stagionatura, i getti dovranno essere riparati da possibilità d'urti, vibrazioni e sollecitazioni d'ogni genere.

La rimozione delle armature di sostegno dei getti dovrà essere effettuata quando siano state sicuramente raggiunte le prescritte resistenze e comunque mai prima di 48 (quarantotto) ore.

In assenza di specifici accertamenti, l'Impresa dovrà attenersi a quanto stabilito nelle Norme Tecniche emanate in applicazione dell'art. 21 della Legge 5/11/1971 n. 1086 (D.M. in vigore).

Avvenuto il disarmo potrà essere richiesta la regolarizzazione della superficie delle opere con malta cementizia . L'applicazione si effettuerà previa pulitura e lavatura delle superfici delle gettate e la malta dovrà essere ben conguagliata con cazzuola e frattazzo, con aggiunta di opportuno spolvero di cemento.

Protezione dopo la scasseratura

Si richiama integralmente il punto 10.6 della Norma UNI ENV 206-1; al fine di evitare un prematuro essiccamento dei manufatti dopo la rimozione delle casseforme, a seguito del quale l'indurimento è ridotto e il materiale risulta più poroso e permeabile, si dovrà procedere ad una stagionatura da eseguire con i metodi sopra indicati.

La durata della stagionatura, intesa come giorni complessivi di permanenza nei casseri e di protezione dopo la rimozione degli stessi, va determinata in base alle indicazioni del punto 10.6.3, prospetti XII e XIII, della Norma UNI 9858.

PREDISPOSIZIONE DI FORI, TRACCE, CAVITÀ, AMMORSATURE, ONERI VARI

L'Impresa avrà a suo carico il preciso obbligo di predisporre in corso d'esecuzione quanto è previsto nei disegni costruttivi o sarà successivamente prescritto di volta in volta in tempo utile dalla Direzione Lavori, circa fori, tracce, cavità, incassature ecc. nelle solette, nervature, pilastri, murature, ecc., per la posa in opera d'apparecchi accessori quali giunti, appoggi, smorzatori sismici, pluviali, passi d'uomo, passerelle d'ispezione, sedi di tubi e di cavi, opere d'interdizione, sicurvia, parapetti, mensole, segnalazioni, parti d'impianti.

Tutte le conseguenze per la mancata esecuzione delle predisposizioni così prescritte dalla Direzione Lavori, saranno a totale carico dell'Impresa, sia per quanto riguarda le rotture, i rifacimenti, le demolizioni d'opere di spettanza dell'Impresa stessa, sia per quanto riguarda le eventuali opere d'adattamento d'infissi o impianti, i ritardi, le forniture aggiuntive di materiali e la maggiore mano d'opera occorrente da parte dei fornitori.

Quando previsto in progetto, le murature in conglomerato cementizio saranno rivestite sulla superficie esterna con paramenti speciali in pietra, laterizi od altri materiali da costruzione; in tal caso i getti dovranno procedere contemporaneamente al rivestimento ed essere eseguiti in modo da consentire l'adattamento e l'ammorsamento.

Qualora la Società dovesse affidare i lavori di protezione superficiale dei conglomerati cementizi a ditte specializzate, nulla è dovuto all'Impresa per gli eventuali oneri che dovessero derivarle dalla necessità di coordinare le rispettive attività.

ARMATURE PER C.A.

Nella posa in opera delle armature metalliche entro i casseri è prescritto tassativamente l'impiego d'opportuni distanziatori prefabbricati in conglomerato cementizio o in materiale plastico; lungo le pareti verticali si dovrà ottenere il necessario distanziamento esclusivamente mediante l'impiego di distanziatori ad anello; sul fondo dei casseri dovranno essere impiegati distanziatori del tipo approvato dalla Direzione Lavori.

L'uso dei distanziatori dovrà essere esteso anche alle strutture di fondazione armate. In assenza di tali distanziatori la Direzione lavori non darà il proprio assenso all'inizio delle operazioni di getto.

Copriferro ed interferro dovranno essere dimensionati nel rispetto del disposto di cui alle Norme d'esecuzione per c.a. e c.a.p., contenute nelle "Norme Tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche "(D.M. in vigore) emanate in applicazione dell'art. 21 della Legge 5.11.1971 n. 1086.

Lo spessore del copriferro, in particolare, dovrà essere correlato allo stato limite di fessurazione del conglomerato, in funzione delle condizioni ambientali in cui verrà a trovarsi la struttura e comunque non dovrà essere inferiore a 3 cm.

Le gabbie d'armatura dovranno essere, per quanto possibile, composte fuori opera; in ogni caso in corrispondenza di tutti i nodi dovranno essere eseguite legature doppie incrociate in filo di ferro ricotto di diametro non inferiore a 0,6 mm, in modo da garantire l'invariabilità della geometria della gabbia durante il getto.

In presenza di ferri d'armatura zincati od in acciaio inox, il filo utilizzato per le legature dovrà avere le stesse caratteristiche dell'acciaio da sottoporre a legatura.

L'Impresa dovrà adottare inoltre tutti gli accorgimenti necessari affinché le gabbie mantengano la posizione di progetto all'interno delle casseforme durante le operazioni di getto.

È a carico dell'Impresa l'onere della posa in opera delle armature metalliche, anche in presenza d'acqua o fanghi bentonitici, nonché i collegamenti equipotenziali.

Malte

Le caratteristiche dei materiali da impiegare per la confezione delle malte ed i rapporti di miscela, corrisponderanno alle prescrizioni delle voci dell'Elenco Prezzi per i vari tipi di impasto ed a quanto verrà, di volta in volta, ordinato dalla Direzione dei Lavori. La resistenza alla penetrazione delle malte deve soddisfare alle Norme UNI 7927-78.

Di norma, le malte per muratura di mattoni saranno dosate con kg 400 di cemento per m³ di sabbia e passate al setaccio ad evitare che i giunti tra mattoni siano troppo ampi; le malte per muratura di pietrame saranno dosate con kg 350 di cemento per m³ di sabbia; quelle per intonaci con kg 400 di cemento per m³ di sabbia e così pure quelle per la stuccatura dei paramenti delle murature.

Il dosaggio dei materiali e dei leganti verrà effettuato con mezzi meccanici suscettibili di esatta misurazione e controllo che l'Impresa dovrà fornire e mantenere efficienti a sua cura e spese.

Gli impasti verranno preparati solamente nelle quantità necessarie per l'impiego immediato; gli impasti residui che non avessero immediato impiego saranno portati a rifiuto.

Intonaci e applicazioni protettive delle superfici in calcestruzzo

In linea generale, per le strutture in calcestruzzo non verranno adottati intonaci, perché le casseforme dovranno essere predisposte ed i getti dovranno essere vibrati con cura tale che le superfici di tutte le predette strutture dovranno presentare aspetto regolare e non sgradito alla vista.

Gli intonaci, quando fosse disposto dalla Direzione dei Lavori, verranno eseguiti dopo accurata pulizia, bagnatura delle pareti e formazione di fasce di guida in numero sufficiente per ottenere la regolarità delle superfici.

A superficie finita non dovranno presentare screpolature, irregolarità, macchie; le fasce saranno regolari ed uniformi e gli spigoli eseguiti a regola d'arte.

Sarà cura dell'Impresa mantenere umidi gli intonaci eseguiti quando le condizioni locali lo richiedono.

Intonaci eseguiti a mano

Nelle esecuzioni di questo lavoro verrà applicato un primo strato di circa 12 mm di malta (rinzaffo), gettato con forza in modo da aderire perfettamente alla muratura. Quando questo primo strato sarà alquanto

consolidato, si applicherà il secondo strato che verrà steso con la cazzuola e regolarizzato con il frattazzo. Lo spessore finito dovrà essere di mm 20; qualora però, a giudizio della Direzione dei Lavori, la finitura dei getti e delle murature lo consenta, potrà essere limitato a mm 10 e in tal caso applicato in una volta sola

Intonaci eseguiti a spruzzo (gunite)

Prima di applicare l'intonaco l'Impresa avrà cura di eseguire mediante martelli ad aria compressa, muniti di appropriato utensile, la "spicconatura" delle superfici da intonacare, alla quale seguirà un efficace lavaggio con acqua a pressione ed occorrendo sabbiatura ad aria compressa.

Le sabbie da impiegare saranno silicee, scevre da ogni impurità ed avranno un appropriato assortimento granulometrico preventivamente approvato dalla Direzione dei Lavori.

La malta sarà di norma composta di kg 500 di cemento normale per m³ di sabbia, salvo diverse prescrizioni della Direzione dei Lavori.

L'intonaco potrà avere lo spessore di mm 20 o 30 e sarà eseguito in due strati, il primo dei quali sarà rispettivamente di mm 12 o 18 circa. Il getto dovrà essere eseguito con la lancia in posizione normale alla superficie da intonacare e posta a distanza di 80÷90 cm dalla medesima. La pressione alla bocca dell'ugello di uscita della miscela sarà di circa 3 atmosfere.

Qualora si rendesse necessario, la Direzione dei Lavori potrà ordinare l'aggiunta degli idonei additivi per le qualità e dosi di volta in volta verranno stabilite ,od anche l'inclusione di reti metalliche elettrosaldate in fili d'acciaio, di caratteristiche che saranno precisate dalla Direzione dei Lavori.

In quest'ultimo caso l'intonaco potrà avere spessore di mm 30÷40.

Quando l'intonaco fosse eseguito in galleria e si verificassero delle uscite d'acqua, dovranno essere predisposti dei tubetti del diametro di 1 pollice.

Questi ultimi saranno asportati una settimana dopo e i fori rimasti saranno chiusi con malta di cemento a rapida presa.

Applicazioni protettive delle superfici in calcestruzzo

Qualora la Direzione dei Lavori lo ritenga opportuno, potrà ordinare all'Impresa l'adozione di intonaci idrofughi o di sostanze protettive delle superfici dei calcestruzzi.

Pietre naturali e marmi

Le pietre naturali da impiegare per la muratura o per qualsiasi altro lavoro, dovranno essere di grana compatta ed esenti da piani di sfaldamento, screpolature, venature ed inclusioni di sostanze estranee; inoltre, dovranno avere dimensioni adatte al particolare tipo di impiego, offrire una resistenza proporzionata all'entità delle sollecitazioni cui dovranno essere sottoposte e possedere un'efficace capacità di adesione alle malte.

Il carico di sicurezza a compressione non dovrà mai superare il 20% del rispettivo carico di rottura. Saranno escluse, salvo specifiche prescrizioni, le pietre gessose ed in generale tutte quelle che potrebbero subire alterazioni per l'azione degli agenti atmosferici o dell'acqua corrente. I materiali dovranno riportare la marcatura CE e riespettare le vigenti norme UNI specifiche per ciascun settore di impiego Es: UNI EN 1341 per lastre in pietra naturale per pavimentazioni esterne, UNI EN 1342 per cubetti in pietra naturale per pavimentazioni esterne, UNI EN 1468 per lastre grezze.

Si intendono compensate tutte le lavorazioni superficiali (fiammatura, sabbiatura, bocciardatura, burrattatura, graffiatura ecc.) che verranno concordate in corso d'opera con la D.L. ed eventualmente la Soprintendenza sulla base di campionature.

Nelle applicazioni di restauro in genere verrà prevista l'antichizzazione delle lastre ottenuta mediante spazzolatura (al fine di riprodurre l'effetto di usura nel tempo accentuando le venature del materiale) escludendo i trattamenti effettuati con acidi.

Le lastre per integrazioni e/o tasselli in interventi di restauro/risanamento dovranno essere dello stesso tipo di quelle esistenti preferibilmente di recupero, in particolare dovranno avere caratteristiche rispondenti a quelle specificate dalla Soprintendenza e dalla D.L., quali ad esempio colore, venatura, spessore, dimensioni, finitura dei bordi, finitura superficiale, finitura dei giunti.

Pietre da taglio

Oltre a possedere i requisiti delle pietre naturali, dovranno essere sonore alla percussione, prive di fenditure e litoclasi e possedere una perfetta lavorabilità.

Sarà vietato l'impiego di materiali con venature disomogenee o, in genere, di brecce.

Inoltre dovranno avere idonea resistenza a compressione, resistenza a flessione, tenacità (resistenza agli urti), capacità di resistenza agli agenti atmosferici e alle sostanze inquinanti, lavorabilità (attitudine ad essere trasformate in blocchi squadrati, in lastre, colonne, capitelli, comici) e lucidabilità (nel caso di elementi "a vista").

L'impresa dovrà verificare che gli elementi vengano lavorati e posati in opera in modo tale che i piani di venatura vengano orientati secondo le corrette giaciture in funzione delle singole applicazioni.

Quando anche si tratti di facce semplicemente abbozzate, esse dovranno venire lavorate sotto regolo in modo da non presentare incavi o sporgenze maggiori di 2 cm rispetto al piano medio; le pietre lavorate a punta grossa non presenteranno irregolarità maggiori di 1 cm.

Per le pietre lavorate a punta mezzana od a punta fina, i letti di posa saranno lavorati a perfetto piano, e le facce dovranno avere gli spigoli vivi e ben rifilati in modo che le connessure non eccedano i 5 mm.

Dove sia prescritta la lavorazione a martellina, le superfici e gli spigoli dovranno essere lavorati in modo che le commessure non eccedano i 3 mm.

Non saranno tollerate né smussature negli spigoli, né cavità nelle facce, né masticature o rattoppi.

Art. 6 - Acciai

Generalità

Esse dovranno essere progettate e costruite tenendo conto di quanto disposto dalle norme vigenti in materia:

L'Impresa sarà tenuta a presentare in tempo utile, prima dell'approvvigionamento dei materiali, all'esame ed all'approvazione della D.L.;

a) il progetto costruttivo delle opere e la relazione completa dei calcoli giustificativi di tutti gli elementi della costruzione nonché le luci di influenza delle deformazioni elastiche nei punti della struttura preventivamente concordata con la D.L.

Nel progetto costruttivo dovranno essere completamente definiti tutti i particolari costruttivi elencati nelle norme sopracitate.

Nella relazione di calcolo dovranno essere indicate le modalità di montaggio dell'opera, specificando il funzionamento statico della struttura nelle diverse fasi del montaggio;

b) tutte le indicazioni necessarie all'esecuzione delle opere di fondazione e alla corretta impostazione delle strutture metalliche sulle medesime.

I progetti costruttivi dovranno essere redatti a cura e spese dell'Impresa e dovranno corrispondere a tipi e norme stabiliti dalla D.L. oltre che a tutte le disposizioni di legge e norme ministeriali vigenti in materia.

Sugli elaborati di progetto, firmati dal progettista e dall'Impresa, dovranno essere riportati tipi e qualità degli acciai da impiegare.

In sede di approvazione dei progetti, la D.L. stabilirà in particolare i tipi e la estensione dei controlli sulle saldature in conformità a quanto stabilito dalle norme tecniche vigenti e tenuto conto di quanto prescritto al riguardo nella relazione.

Dopo l'approvazione del progetto costruttivo da parte della D.L., dovrà presentare a quest'ultima, in lucido e copie, i disegni esecutivi di officina sui quali dovranno essere riportate anche le distinte da cui risultino: numero, qualità, dimensioni, grado di finitura e pesi teorici di ciascun elemento costituente la struttura .

L'Impresa, inoltre, deve far conoscere per iscritto, prima dell'approvvigionamento dei materiali che intende impiegare, la loro provenienza, avuto riferimento alle distinte di cui sopra.

Collaudo tecnologico dei materiali

Ogni volta che le partite di materiale metallico destinato alla costruzione delle travi e degli apparecchi di appoggio perverranno agli stabilimenti per la successiva lavorazione, l'Impresa darà comunicazione alla Direzione dei Lavori specificando, per ciascuna colata, la distinta dei pezzi ed il relativo peso, la ferriera di provenienza, la destinazione costruttiva, i risultati dei collaudi interni.

La Direzione dei Lavori si riserva la facoltà di prelevare campioni da sottoporre a prova presso laboratori di sua scelta ogni volta che lo ritenga opportuno.

Le prove e le modalità di esecuzione saranno quelle prescritte dale norme tecniche vigenti.

Collaudo dimensionale e di lavorazione

La Direzione dei Lavori si riserva il diritto di chiedere il premontaggio in officina, totale o parziale delle strutture, secondo modalità da concordare di volta in volta con l'Impresa.

Per i manufatti per i quali è prevista una fornitura di oltre 10 esemplari da realizzare in serie, deve prevedersi all'atto del collaudo in officina, il premontaggio totale o parziale, da convenirsi secondo i criteri di cui sopra, di un solo prototipo per ogni tipo.

In tale occasione la Direzione dei Lavori procederà alla accettazione provvisoria dei materiali metallici lavorati.

Analogamente a quanto detto al comma precedente, ogni volta che si rendono pronte per il collaudo le travate, l'Impresa informerà la Direzione dei Lavori indicando tipo e destinazione di ciascuna di esse.

Entro 8 giorni la Direzione dei Lavori darà risposta fissando la data del collaudo in contraddittorio, oppure autorizzando la spedizione della travata stessa in cantiere.

Nel caso del collaudo in contraddittorio, gli incaricati della Direzione dei Lavori verificheranno sia per ogni una delle parti componenti le opere appaltate, quanto per l'insieme di esse, la esatta e perfetta lavorazione a regola d'arte ed in osservanza ai patti contrattuali.

I pezzi presentati all'accettazione provvisoria devono essere scevri di qualsiasi verniciatura, fatta eccezione per le superfici di contatto dei pezzi uniti definitivamente fra loro, che debbono essere verniciati in conformità alle prescrizioni della Direzione dei Lavori.

Montaggio

Il montaggio in opera di tutte le strutture costituenti ciascun manufatto sarà effettuato in conformità a quanto, a tale riguardo è previsto nella relazione di calcolo.

Durante il carico, il trasporto, lo scarico, il deposito e il montaggio, si dovrà porre la massima cura per evitare che le strutture vengano deformate o sovrasollecitate.

Le parti a contatto con funi, catene od altri organi di sollevamento saranno opportunamente protette.

Il montaggio sarà eseguito in modo che la struttura raggiunga la configurazione geometrica di progetto.

In particolare, per quanto riguarda le strutture a travata, si dovrà controllare che la controfreccia ed il posizionamento sugli apparecchi di appoggio siano conformi alle indicazioni di progetto, rispettando le tolleranze previste.

La stabilità delle strutture dovrà essere assicurata durante tutte le fasi costruttive e la rimozione dei collegamenti provvisori e di altri dispositivi ausiliari dovrà essere fatta solo quando essi risulteranno staticamente superflui.

Nei collegamenti con bulloni si dovrà procedere alla alesatura di quei fori che non risultino centrati e nei quali bulloni previsti in progetto non entrino liberamente.

Se il diametro del foro alesato risulta superiore al diametro nominale del bullone, oltre la tolleranza prevista dalle norme vigenti, si dovrà procedere alla sostituzione del bullone con un diametro superiore.

Nei collegamenti ad attrito con bulloni ad alta resistenza è prescritta l'esecuzione della sabbiatura a metallo bianco non più di due ore prima dell'unione.

È ammesso il serraggio dei bulloni con chiave pneumatica purché questa venga controllato con chiave dinamometrica, la cui taratura dovrà risultate da certificato rilasciato da Laboratorio ufficiale in data non anteriore ad un mese.

Per ogni unione con bulloni, l'Impresa effettuerà, alla presenza della Direzione dei Lavori, un controllo di serraggio su un numero di bulloni pari al 10% del totale ed in ogni caso su non meno di quattro.

Dopo il completamento della struttura e prima dell'esecuzione della prova di carico, l'Impresa dovrà effettuare la ripresa della coppia di serraggio di tutti i bulloni costituenti le unioni, dandone preventiva comunicazione alla Direzione dei Lavori.

L'assemblaggio ed il montaggio in opera delle strutture dovrà essere effettuato senza che venga interrotto il traffico di cantiere sulla sede stradale salvo brevi interruzioni durante le operazioni di sollevamento, da concordare con la Direzione dei Lavori.

Nella progettazione e nell'impiego delle attrezzature di montaggio, l'Impresa è tenuta a rispettare le norme, le prescrizioni ed i vincoli che eventualmente venissero imposti da Enti, Uffici e persone responsabili riguardo la zona interessata ed in particolare:

- per l'ingombro degli alvei dei corsi d'acqua;
- o per le sagome da lasciare libere nei sovrappassi o sottopassi di strade, autostrade, ferrovie, tramvie, ecc.:
- per le interferenze con servizi di soprasuolo e di sottosuolo.

Prove di carico e collaudo statico delle strutture in acciaio

Prima di sottoporre le strutture in acciaio alle prove di carico, dopo la loro ultimazione in opera e, di regola, prima che siano applicate le ultime mani di vernice, verrà eseguita da parte della Direzione dei Lavori un'accurata visita preliminare di tutte le membrature per constatare che le strutture siano state eseguite in conformità ai relativi disegni di progetto, alle buone regole d'arte ed a tutte le prescrizioni di contratto.

Ove nulla osti, si procederà quindi alle prove di carico ed al collaudo statico delle strutture, operazioni che verranno condotte, a cura e spese dell'Impresa, secondo le prescrizioni contenute nelle norme vigenti.

I materiali ferrosi da impiegare nei lavori dovranno essere esenti da scorie, soffiature, brecciature, paglie o da qualsiasi altro difetto di fusione, laminazione, trafilature, fucinatura e simili.

Essi dovranno avere tutte le caratteristiche previste nelle Norme Tecniche per la costruzioni D.M. 14 gennaio 2008 e relativa Circolare 2 febbraio 2009 (n° 617) e da tutte le norme UNI vigenti e presentare inoltre, seconda della loro quantità, i requisiti indicati ai paragrafi seguenti.

Ferro

Il ferro comune dovrà essere di prima qualità, eminentemente duttile e tenace e di marcatissima struttura fibrosa. Esso dovrà essere malleabile, liscio alla superficie esterna, privo di screpolature, senza saldature aperte, e senza altre soluzioni di continuità.

Acciaio da carpenteria

L'Impresa sarà tenuta all'osservanza delle Norme Tecniche per la costruzioni D.M. 14 gennaio 2008 e relativa CIRCOLARE 2 febbraio 2009 (n° 617) e di tutte le norme UNI vigenti, applicabili.

Per quanto applicabili e non in contrasto con le suddette Norme, si richiamano qui espressamente anche le seguenti Norme UNI:

- UNI 7070/82 relativa ai prodotti laminati a caldo di acciaio non legato di base e di qualità;
- UNI 10011/88 relativa alle costruzioni in acciaio, recante istruzioni per il calcolo, l'esecuzione e la manutenzione.
- CNR 10016-85 relativa alle strutture miste in acciaio-calcestruzzo

I materiali impiegati nella costruzione di strutture in acciaio dovranno essere "qualificati", la marcatura dovrà risultare leggibile ed il produttore dovrà accompagnare la fornitura con l'attestato di controllo e la dichiarazione che il prodotto è qualificato.

Prima dell'approvvigionamento dei materiali da impiegare l'Impresa dovrà presentare alla Direzione Lavori, in copia riproducibile i disegni costruttivi di officina delle strutture, nei quali dovranno essere completamente definiti tutti i dettagli di lavorazione, ed in particolare:

- i diametri e la disposizione dei bulloni, nonché dei fori relativi;
- le coppie di serraggio dei bulloni ad alta resistenza;
- le classi di qualità delle saldature;
- il progetto e le tecnologie di esecuzione delle saldature, e specificatamente: le dimensioni dei cordoli, le caratteristiche dei procedimenti, le qualità degli elettrodi;
- gli schemi di montaggio e controfrecce di officina

Sui disegni costruttivi di officina dovranno essere inoltre riportate le distinte dei materiali, nelle quali sarà specificato numero, qualità, tipo di lavorazione, grado di finitura, dimensioni e peso teorico di ciascun elemento costituente la struttura. L'Impresa dovrà inoltre far conoscere per iscritto, prima dell'approvvigionamento dei materiali da impiegare, la loro provenienza con riferimento alle distinte di cui sopra.

È facoltà della Direzione dei Lavori di sottoporre il progetto, le tecnologie di esecuzione delle saldature, alla consulenza dell'Istituto Italiano della Saldatura, o di altro Ente di sua fiducia.

La Direzione Lavori stabilirà il tipo e l'estensione dei controlli da eseguire sulle saldature, sia in corso d'opera che ad opera finita, in conformità a quanto stabilito dal D.M. 27/7/1985 e successivi aggiornamenti, e tenendo conto delle eventuali raccomandazioni dell'Ente di consulenza.

Consulenza e controlli saranno eseguiti dagli Istituti indicati dalla Direzione Lavori.

Si precisa che tutti gli acciai dei gradi B, C e D, da impiegare nelle costruzioni, saranno da sottoporre, in sede di collaudo tecnologico, al controllo della resilienza.

La fornitura dovrà essere accompagnata della seguente documentazione:

- certificato di collaudo secondo UNI EN 10204 (dicembre 1992);
- dichiarazione che il prodotto è qualificato ai sensi delle norme tecniche vigenti (D.M. 09/01/96), e di aver soddisfatto tutte le relative prescrizioni, riportando gli estremi del marchio e unendo copia del relativo certificato del laboratorio ufficiale.

Collegamenti bullonati

L'Impresa sarà tenuta all'osservanza delle Norme Tecniche per la costruzioni D.M. 14 gennaio 2008 e di tutte le norme UNI vigenti.

I collegamenti bullonati dovranno essere eseguiti con bulloni ad alta resistenza di classe indicata negli elaborati di progetto e/o indicata dalla D.L..

Rosette e piastrine dovranno essere realizzate con acciaio di tipo e classe prescritti negli elaborati di progetto e/o indicati dalla D.L..

Collegamenti saldati

Saldature a cordone d'angolo e/o a completa penetrazione di prima classe secondo quanto previsto dal delle Norme Tecniche per la costruzioni D.M. 14 gennaio 2008 e da tutte le norme UNI vigenti.

Quando richiesto dalla D.L., la fornitura dovrà essere accompagnata dai certificati relativi all'esame radiografico eseguito in officina.

Il Direttore dei lavori potrà a cura e spese dell'impresa ordinare in cantiere ulteriori controlli radiografici e ultrasonori per verificare la classe di appartenenza delle saldature eseguite.

In numero e l'estensione dei controlli magnetici da eseguire sui cordoni ad angolo verrà stabilita dal Direttore dei Lavori, e dovranno essere eseguiti a cura dell'impresa.

Acciai inossidabili

La composizione e le caratteristiche meccaniche dei vari tipi di acciaio impiegati devono corrispondere ai valori fissati dagli standard AISI (American Iron Steel Institute) c/o ACI (Alloy Casting Institute).

Il tipo di acciaio sarà quello prescritto negli elaborati progettuali. Per quanto riguarda i controlli ed i prelievi su questi materiali vale quanto detto nel paragrafo precedente.

In particolare, ove non diversamente specificato, si prescrive l'utilizzo di acciaio inossidabile austenitico a basso contenuto di carbonio con sigla italiana X2CrNiMo17 12, corrispondente alla classe AISI 316L, che sia conforme alla norma EN 10088 – 3, con classe di resistenza C700 (tensione di snervamento incrementata fyk = 350 N/mm2, tensione ultima di trazione incrementata fuk = 700 N/mm2).

In ambienti non aggressivi la D.L. potrà autorizzare l'utilizzo di acciaio inox di classe AISI 304L (o 304 se non sono previste saldature).

I metalli da impiegare nei lavori dovranno essere esenti da imperfezioni sia superficiali che interne (scorie, soffiature, bolle) e da qualsiasi altro difetto di fusione.

Gli acciai inox dovranno presentare il grado di finitura previsto in progetto, di norma sabbiatura; pallinatura o satinatura ottenuta mediante smerigliatura e preceduta da decapaggio con soluzione acida. In corrispondenza di cordoni di saldatura o in altri punti particolari, la smerigliatura dovrà essere preceduta da rimozione dei residui del fondente e da sabbiatura.

Particolare cura dovrà essere posta nell'imballaggio delle lamiere e nella protezione superficiale mediante carta o plastica adesiva.

Acciai in barre ad aderenza migliorata B450 C (Feb 44k)

Gli acciai per armature di c.a. debbono corrispondere ai tipi ed alle caratteristiche stabilite dalle Norme Tecniche per la costruzioni D.M. 14 gennaio 2008 e da tutte le norme UNI vigenti.

Le modalità di prelievo dei campioni da sottoporre a prova sono quelle previste dallo stesso D.M. sopraccitato. Dovrà essere privo di difetti ed inquinamenti che ne pregiudichino l'impiego.

La D.L. dovrà, sottoporre a controllo in cantiere le barre ad aderenza migliorata FeB38K e FeB44K in conformità a quanto citato dal succitato decreto.

Anche in questo caso i campioni verranno prelevati in contraddittorio con l'impresa ed inviati a cura della D.L. ed a spese dell'impresa ad un Laboratorio Ufficiale.

La D.L. darà benestare per la posa in opera delle partite sottoposte all'ulteriore controllo in cantiere soltanto dopo che avrà ricevuto il relativo certificato di prova e ne avrà constatato l'esito positivo.

Nel caso di esito negativo si procederà come indicato nel D.M. 14 gennaio 2008 sopraccitato.

Qualora l'Appaltatore intenda effettuare la sagomatura e/o l'assemblaggio delle barre al di fuori del cantiere dovrà rivolgersi ad un centro di trasformazione di cui al punto 11.3.1.7 del DM 14/01/2008.

In tal caso ogni fornitura dovrà essere accompagnata, oltre che dalla documentazione sopraccitata anche dalla seguente:

- da dichiarazione, su documento di trasporto, degli estremi dell'attestato di avvenuta dichiarazione di attività, rilasciato dal Servizio Tecnico Centrale, recante il logo o il marchio del centro di trasformazione;
- dall'attestazione inerente l'esecuzione delle prove di controllo interno fatte eseguire dalla Direzione Tecnico del centro di trasformazione, con l'indicazione dei giorni nei quali la fornitura è stata lavorata. Qualora la Direzione dei Lavori lo richieda, all'attestazione di cui sopra potrà seguire copia dei certificati relativi alle prove effettuate nei giorni in cui la lavorazione è stata effettuata.

Art.7 - Calcestruzzi –

Generalità - Normativa di riferimento

Tutti i calcestruzzi impiegati saranno a "prestazione garantita", in conformità alla UNI EN 206-1. Ciascuna tipologia di conglomerato dovrà soddisfare i seguenti requisiti in accordo con quanto richiesto dalle norme UNI 11104 e UNI EN 206-1 in base alla classe (ovvero alle classi) di esposizione ambientale dell'opera cui il calcestruzzo è destinato:

massimo rapporto (a/c);

classe di resistenza caratteristica a compressione minima;

classe di consistenza o indicazione numerica di abbassamento al cono ovvero, nei casi previsti al punto 6.3, classe di spandimento alla tavola a scosse;

aria aggiunta (solo per le classi di esposizione XF2, XF3, XF4);

contenuto minimo di cemento al m3;

tipo di cemento (solo quando esplicitamente richiesto dalle norme succitate);

diametro massimo (DMAX) nominale dell'aggregato;

classe di contenuto in cloruri del calcestruzzo (secondo il § 5.2.7 della UNI EN 206-1).

Nella tabella I sono riportate le tipologie di conglomerato ed i loro campi di impiego in via generale.

Resta inteso che le indicazioni del Progettista, qualora differenti, sono comunque vincolanti.

Tabella I – Tipologie di calcestruzzo

		(UNI 11104-prosp.1)	(UNI 11104-prosp. 4)							
Tipo	Campi di impiego	Classi esposizione ambientale	Classe resistenza	Rapporto a/c max	Contenuto minimo di cemento [kg/m³]	Contenuto di aria in % (solo per classi XF2, XF3 e XF4)	D _{MAX}	Classe di consistenza **	Tipo di cemento (se necessario)	Classe contenuto in cloruri
I-A	strutture di fondazione armate quali plinti, cordoli, pali, travi rovesce, paratie, platee, blocchi di ancoraggio, diaframmi e muri interrati in terreni non aggressivi	XC2	C (25/30)	0.60	300		32	S4		CI 0.4
I LR	strutture di fondazione armate (come I-A) di grande spessore *	XC2	C (25/30)	0.60	300		32	S4	LH (Low Heat) secondo UNI EN 197-1:2007	CI 0.4
II-A	strutture orizzontali di ponti, viadotti, cavalcavia, sottovia e ponticelli con luci superiori agli 8.00 m: impalcati, solette, marciapiedi, barriere e sicurvia	XC4	C (32/40)	0.50	340		32	S5 ovvero 230±30 mm		CI 0.4
II-B	strutture orizzontali di ponti, viadotti, cavalcavia, sottovia e ponticelli con luci superiori agli 8.00 m soggetti a clima rigido e a sali disgelanti: impalcati, solette, marciapiedi, barriere e sicurvia	XC4 YEA	C (28/35)	0.45	360	5 ± 0.5	32	S5 ovvero 230±30 mm		CI 0.2
шс	strutture orizzontali di ponti, viadotti, cavalcavia, sottovia e ponticelli con luci superiori agli 8.00 m situati lungo zone costiere: impalcati, solette, marciapiedi, barriere e sicurvia		C (32/40)	0.50	340		32	S5 ovvero 230±30 mm		CI 0.2

III-A	strutture verticali di ponti, viadotti, cavalcavia, sottovia e ponticelli con luci superiori agli 8.00 m: pile, pulvini, spalle, muri accessori		C (32/40)	0.50	340		32	S4		CI 0.4
		(UNI 11104-prosp.1)		UNI 11104-	orosp. 4)					
Tipo	Campi di impiego	Classi esposizione ambientale	Classe resistenza	Rapporto a/c max	Contenuto minimo di cemento	Contenuto di aria in % (solo per classi XF2, XF3 e XF4)	D _{MAX}	Classe di consistenza	Tipo di cemento	Classe contenuto in cloruri
III-B	strutture verticali di ponti, viadotti, cavalcavia, sottovia e ponticelli con luci superiori agli 8.00 m soggetti a clima rigido e a sali disgelanti: pile, pulvini, spalle, muri accessori	XC4 YE2	C (28/35)	0.45	360	5 ± 0.5	32	S4		CI 0.2
III-C	strutture verticali di ponti, viadotti, cavalcavia, sottovia e ponticelli con luci superiori agli 8.00 m situati lungo zone costiere: pile, pulvini, spalle, muri accessori	XC4	C (32/40)	0.50	340		32	S4		CI 0.2
IV-A	- porzioni in elevazione di muri di sottoscarpa e controripa in c.a. - ponticelli con luce inferiore a 8.00 m - tombini scatolari - cunette e cordoli laterali	XC4	C (32/40)	0.50	340		32	S4		CI 0.4
IV-B	 porzioni in elevazione di muri di sottoscarpa e controripa in c.a. soggetti a clima rigido ponticelli con luce inferiore a 8.00 m tombini scatolari cunette e cordoli laterali 	XC4 XF2 XD1	C (28/35)	0.45	360	5 ± 0.5	32	S4		CI 0.2
V	strutture di elevazione di grande spessore: pile da ponte e muri di sostegno, che in servizio sono esposte all'azione della pioggia in zone a clima temperato e rigido *	VC4	C (32/40)	0.50	340		32	S4	LH (Low Heat) secondo UNI EN 197-1:2007	CI 0.4
	- muri di sottoscarpa e controripa in calcestruzzo semplice o debolmente armato (fino ad un'incidenza massima di 30 kg/m³) - fondazioni non armate (pozzi, sottoplinti, etc.) - rivestimenti di tubazioni (tombini tubolari, etc.) - prismi per difese spondali		C (20/25)	0.65	260		32	S4		CI 0.4

^(*) per la classificazione delle opere di grande spessore cfr. punto 8.7.

Con riguardo alle indicazioni sui calcestruzzi contenute nella tabella I, si specifica che gli elementi prefabbricati eventualmente utilizzati all'interno di strutture gettate in opera (es. travi di impalcati, etc.) ovvero in luogo delle stesse (es. cordoli, cunette, sicurvia, barriere, etc.) dovranno comunque rispettare i requisiti di resistenza caratteristica minima richiesti

- Caratteristiche dei materiali costituenti i conglomerati cementizi

I materiali ed i prodotti per uso strutturale utilizzati per la realizzazione di opere in c.a. e c.a.p. devono rispondere ai requisiti indicati al § 11.1 del DM 14-01-2008.

In particolare per i materiali e prodotti recanti la Marcatura CE sarà onere del Direttore dei Lavori, in fase di accettazione, accertarsi del possesso della marcatura stessa e richiedere ad ogni fornitore, per ogni diverso prodotto, il Certificato ovvero Dichiarazione di Conformità alla parte armonizzata della specifica norma europea ovvero allo specifico Benestare Tecnico Europeo, per quanto applicabile.

Sarà inoltre onere del Direttore dei Lavori verificare che tali prodotti rientrino nelle tipologie, classi e/o famiglie previsti nella detta documentazione.

Per i prodotti non recanti la Marcatura CE, il Direttore dei Lavori dovrà accertarsi del possesso e del regime di validità dell'Attestato di Qualificazione (caso B) o del Certificato di Idoneità Tecnica all'impiego (caso C) rilasciato del Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici.

Ad eccezione di quelli in possesso di Marcatura CE, possono essere impiegati materiali o prodotti conformi ad altre specifiche tecniche qualora dette specifiche garantiscano un livello di sicurezza equivalente a quello previsto nelle presenti norme. Tale equivalenza sarà accertata attraverso procedure all'uopo stabilite dal Servizio Tecnico Centrale del Consiglio Superiore dei LavoriPubblici, sentito lo stesso Consiglio Superiore.

^(**) i valori della consistenza possono essere indicati diversamente a discrezione del Progettista, sulla base della geometria degli elementi strutturali, della loro posizione, della densità d'armatura e delle modalità esecutive

Cemento

Tutti i manufatti in c.a. e c.a.p. dovranno essere eseguiti impiegando unicamente cementi provvisti di attestato di conformità CE che soddisfino i requisiti previsti dalla norma UNI EN 197-1:2007.

Qualora vi sia l'esigenza di eseguire getti massivi, al fine di limitare l'innalzamento della temperatura all'interno del getto in conseguenza della reazione di idratazione del cemento, sarà opportuno utilizzare cementi comuni a basso calore di idratazione contraddistinti dalla sigla LH contemplati dalla norma UNI EN 197-1:2007.

Se è prevista una classe di esposizione XA, secondo le indicazioni della norma UNI EN 206 e UNI 11104, conseguente ad un'aggressione di tipo solfatico o di dilavamento della calce, sarà necessario utilizzare cementi resistenti ai solfati o alle acque dilavanti in accordo con la UNI 9156 o la UNI 9606.

Controlli sul cemento

Controllo della documentazione

In cantiere o presso l'impianto di preconfezionamento del calcestruzzo è ammessa esclusivamente la fornitura di cementi di cui ai paragrafi precedenti.

Tutte le forniture di cemento devono essere accompagnate dall'attestato di conformità CE.

Le forniture effettuate da un intermediario, ad esempio un importatore, dovranno essere accompagnate dall'Attestato di Conformità CE rilasciato dal produttore di cemento e completato con i riferimenti ai Documenti di Trasporto dei lotti consegnati dallo stesso intermediario.

La Direzione dei Lavori è tenuta a verificare periodicamente quanto sopra indicato, in particolare la corrispondenza del cemento consegnato, come rilevabile dalla documentazione anzidetta, con quello previsto per la realizzazione dei calcestruzzi.

Controllo di accettazione

La Direzione dei Lavori potrà richiedere controlli di accettazione sul cemento in arrivo in cantiere nel caso in cui il calcestruzzo sia prodotto da impianto di preconfezionamento installato all'interno del cantiere stesso e non operante con processo industrializzato (di cui al punto 4.2).

Il prelievo del cemento dovrà avvenire al momento della consegna in conformità alla norma UNI EN 196-7. L'impresa dovrà assicurarsi, prima del campionamento, che il sacco da cui si effettua il prelievo sia in perfetto stato di conservazione o, alternativamente, che l'autobotte sia ancora munita di sigilli; il campionamento sarà effettuato in contraddittorio con un rappresentante del produttore di cemento.

Il controllo di accettazione di norma potrà avvenire indicativamente ogni 5.000 tonnellate di cemento consegnato.

Il campione di cemento prelevato sarà suddiviso in almeno tre parti di cui una verrà inviata ad un Laboratorio di cui all'art 59 del D.P.R. n. 380/2001 scelto dalla Direzione dei Lavori, un'altra è a disposizione dell'impresa e la terza rimarrà custodita, in un contenitore sigillato, per eventuali controprove.

Aggiunte

Per le aggiunte di tipo I (praticamente inerti) si farà riferimento alla norma UNI EN 12620.

Per le aggiunte di tipo II (pozzolaniche o ad attività idraulica latente) si farà riferimento alla UNI 11104 § 4.2 e alla UNI EN 206-1 § 5.1.6 e § 5.2.5.

La conformità delle aggiunte alle relative norme dovrà essere dimostrata in fase di verifica preliminare delle miscele di cui al successivo punto 4 e, in seguito, ogni qualvolta la Direzione dei Lavori ne faccia richiesta.

Ceneri volanti

Le ceneri provenienti dalla combustione del carbone, ai fini dell'utilizzazione nel calcestruzzo come aggiunte di tipo II, devono essere conformi alla UNI EN 450 e provviste di marcatura CE in ottemperanza alle disposizioni legislative in materia di norma armonizzata. Le ceneri non conformi alla UNI EN 450, ma conformi alla UNI EN 12620 possono essere utilizzate nel calcestruzzo come aggregato.

Ai fini del calcolo del rapporto a/c equivalente (di cui al § 6.4) il coefficiente k per le ceneri conformi alla UNI-EN 450, come definito al § 5.2.5.2 della UNI-EN 206-1, verrà desunto in accordo al prospetto 3 della UNI 11104 di seguito riportato.

Tipo di cemento	Classi di resistenza	Valori di k
CEMI	32.5 N, R	0.2
CEMI	42.5 N, R	0.4
	52.5 N, R	
CEM II/A	32.5 N, R	0.2
	42.5 N, R	
CEM III/A	32.5 N, R	0.2
	42.5 N, R	
CEM IV/A	32.5 N, R	0.2
	42.5 N, R	
CEM V/A	32.5 N, R	0.2
	42.5 N, R	

Tabella II - Valori del coefficiente k per ceneri volanti conformi alla UNI EN 450 (prospetto 3, UNI 11104)

Fumo di silice

I fumi di silice provenienti dalle industrie che producono il silicio metallico e le leghe ferro-silicio, ai fini dell'utilizzazione nel calcestruzzo come aggiunte di tipo II, devono essere conformi alla UNI EN 13263 parti 1 e 2 e provviste di marcatura CE in ottemperanza alle disposizioni legislative in materia di norma armonizzata.

Il fumo di silice può essere utilizzato allo stato naturale (in polvere così come ottenuto all'arco elettrico), come sospensione liquida (c.d. "slurry") di particelle con contenuto secco del 50% in massa, oppure in sacchi di premiscelato contenenti fumo di silice e additivo superfluidificante. Se impiegato in forma di slurry il quantitativo di acqua apportato dalla sospensione contenente fumo di silice dovrà essere tenuto in conto nel calcolo del rapporto acqua/cemento equivalente.

In deroga a quanto riportato al § 5.2.5.2.3 della norma UNI EN 206-1 la quantità massima di fumo di silice che può essere considerata agli effetti del rapporto acqua/cemento equivalente e del contenuto di cemento deve soddisfare il requisito:

fumo di silice $\leq 7\%$ rispetto alla massa di cemento.

Se la quantità di fumi di silice che viene utilizzata è maggiore, l'eccesso non deve essere considerato agli effetti del valore di k.

Ai fini del calcolo del rapporto a/c equivalente il coefficiente k verrà desunto dal prospetto seguente che deve intendersi generalmente riferito a fumi di silice utilizzati nel confezionamento di calcestruzzi impiegando esclusivamente cementi tipo I e CEM II-A di classe 42,5 e 42,5R conformi alla UNI EN 197-1:

per un rapporto acqua/cemento prescritto $\leq 0.45 \text{ k} = 2.0$

per un rapporto acqua/cemento prescritto >0,45~k=2,0 eccetto k=1,0 in presenza delle classi di esposizione XC e XF

La quantità (cemento + k * quantità fumo di silice, c.d. contenuto di cemento equivalente) non deve comunque risultare inferiore al dosaggio minimo di cemento richiesto ai fini della durabilità in funzione della classe (o delle classi) di esposizione ambientale in cui la struttura ricade.

L'impiego di fumo di silice con cementi diversi da quelli sopramenzionati è subordinato all'approvazione preliminare della Direzione dei Lavori.

Aggregati

Gli aggregati impiegati per il confezionamento del calcestruzzo potranno provenire da vagliatura e trattamento dei materiali alluvionali o da frantumazione di materiali di cava; essi dovranno possedere

marcatura CE secondo il D.P.R. n. 246/93 e successivi decreti attuativi. Copia della documentazione dovrà essere custodita dalla Direzione dei Lavori e dall'Impresa. In assenza di tali certificazioni il materiale non potrà essere posto in opera, e dovrà essere allontanato e sostituito con materiale idoneo.

L'attestazione di marcatura CE dovrà essere consegnata alla D.L. ad ogni eventuale cambiamento di cava.

Gli aggregati saranno conformi ai requisiti delle norme UNI EN 12620 e UNI 8520-2 con i relativi riferimenti alla destinazione d'uso del calcestruzzo (§ 4.8 della UNI 8520-2).

La massa volumica media del granulo in condizioni s.s.a. (saturo a superficie asciutta) deve essere pari o superiore a 2300 kg/m3. A questa prescrizione si potrà derogare solo in casi di comprovata impossibilità di approvvigionamento locale, purché siano continuamente rispettate le prescrizioni in termini di resistenza caratteristica a compressione e di durabilità. Per opere caratterizzate da un elevato rapporto superficie/volume, laddove assume un'importanza predominante la minimizzazione del ritiro igrometrico del calcestruzzo, occorrerà preliminarmente verificare che l'impiego di aggregati di minore massa volumica non determini un incremento del ritiro rispetto ad un analogo conglomerato confezionato con aggregati di massa volumica media maggiore di 2300 Kg/m3. Per i calcestruzzi con classe di resistenza a compressione maggiore di C(50/60) dovranno essere utilizzati aggregati di massa volumica maggiore di 2600 kg/m3.

Gli aggregati dovranno rispettare i requisiti minimi imposti dalla norma UNI 8520-2 relativamente al contenuto di sostanze nocive.

In particolare:

- il contenuto di solfati solubili in acido (espressi come SO3 da determinarsi con la procedura prevista dalla UNI-EN 1744-1 punto 12) dovrà risultare inferiore allo 0.2% sulla massa dell'aggregato indipendentemente dal fatto che l'aggregato sia grosso oppure fine (aggregati con classe di contenuto di solfati AS0,2);
- il contenuto totale di zolfo (da determinarsi con UNI-EN 1744-1 punto 11) dovrà risultare inferiore allo 0.1%:
- gli aggregati non dovranno contenere forme di silice amorfa alcali-reattiva o in alternativa dovranno evidenziare espansioni su prismi di malta, valutate con la prova accelerata e/o con la prova a lungo termine in accordo alla metodologia prevista dalla UNI 8520-22, inferiori ai valori massimi riportati nella UNI 8520 parte 2.

È consentito l'uso di aggregati grossi provenienti da riciclo nel rispetto delle prescrizioni imposte dal § 11.2.9.2 del DM 14-01-2008, purché l'utilizzo non pregiudichi alcuna caratteristica del calcestruzzo, né allo stato fresco, né indurito.

Acqua di impasto

Per la produzione del calcestruzzo dovranno essere impiegate le acque potabili e quelle di riciclo conformi alla UNI EN 1008:2003.

Additivi

Gli additivi per la produzione del calcestruzzo devono possedere la marcatura CE ed essere conformi, in relazione alla particolare categoria di prodotto cui essi appartengono, ai requisiti imposti dai rispettivi prospetti della norma UNI EN 934 (parti 2, 3, 4 e 5). Per gli altri additivi che non rientrano nelle classificazioni della norma armonizzata si dovrà verificarne l'idoneità all'impiego in funzione dell'applicazione e delle proprietà richieste per il calcestruzzo.

E' onere dell'Impresa verificare preliminarmente i dosaggi ottimali di additivo per conseguire le prestazioni reologiche e meccaniche richieste oltre che per valutare eventuali effetti indesiderati. Per la produzione degli impasti è opportuno che vi sia un impiego costante di additivi fluidificanti/riduttori di acqua o superfluidificanti/riduttori di acqua ad alta efficacia per limitare il contenuto di acqua di impasto, migliorare la stabilità dimensionale del calcestruzzo e la durabilità delle opere.

Per le riprese di getto si potrà far ricorso all'utilizzo di ritardanti di presa e degli adesivi per riprese di getto: in ogni caso dovrà essere evitata qualsiasi soluzione di continuità degli elementi strutturali.

Nel periodo invernale al fine di evitare i danni derivanti dalla azione del gelo, in condizioni di maturazione al di sotto dei 5 °C, si farà ricorso, oltre che agli additivi superfluidificanti, all'utilizzo di additivi acceleranti di presa e di indurimento privi di cloruri (cfr. punto 8.3.1).

Per le strutture sottoposte all'azione del gelo e del disgelo, si farà ricorso all'impiego di additivi aeranti come prescritto dalle norme UNI EN 206-1 e UNI 11104.

QUALIFICA DEI CONGLOMERATI CEMENTIZI

In accordo al DM 14-01-2008 per la produzione del calcestruzzo si possono configurare due differenti possibilità:

- calcestruzzo prodotto senza processo industrializzato;
- calcestruzzo prodotto con processo industrializzato.

Le miscele, se prodotte con un processo industrializzato di cui meglio si specifica nel seguito, non necessitano di alcuna prequalifica, che si richiede invece per conglomerati prodotti senza processo industrializzato.

Calcestruzzo prodotto senza processo industrializzato

Tale situazione si configura unicamente nella produzione di quantitativi di miscele omogenee inferiori ai 1500 m3, effettuate direttamente in cantiere mediante processi di produzione temporanei e non industrializzati. In tal caso la produzione deve avvenire sotto la diretta responsabilità dell'Impresa e con la diretta vigilanza della Direzione dei Lavori. In questo caso, l'Impresa è tenuta ad effettuare la qualificazione iniziale delle miscele per mezzo della "Valutazione preliminare della Resistenza" (§ 11.2.3 del DM 14-01-2008) prima dell'inizio della costruzione dell'opera, attraverso idonee prove preliminari atte ad accertare la resistenza caratteristica per ciascuna miscela omogenea di conglomerato che sarà utilizzata per la costruzione dell'opera (indicata in tabella I).

La qualificazione iniziale di tutte le miscele utilizzate deve effettuarsi per mezzo di prove certificate da parte dei laboratori di cui all'art.59 del D.P.R. n.380/2001.

Nella relazione di prequalifica l'Impresa dovrà fare esplicito riferimento a:

- materiali che si intendono utilizzare, indicandone provenienza, tipo e qualità;
- documentazione comprovante la marcatura CE dei materiali costituenti;
- massa volumica reale s.s.a. e assorbimento, per ogni classe di aggregato, valutati secondo la Norma UNI 8520;
- diametro nominale massimo degli aggregati e studio granulometrico;
- tipo, classe e dosaggio del cemento;
- rapporto acqua-cemento;
- massa volumica del calcestruzzo fresco e calcolo della resa;
- classe di esposizione ambientale cui è destinata la miscela;
- tipo e dosaggio degli eventuali additivi;
- contenuto di aria della miscela;
- proporzionamento analitico della miscela e resa volumetrica;
- classe di consistenza del calcestruzzo;
- resistenza caratteristica a compressione a 28 gg. (Rck) e risultati delle prove di resistenza a compressione;
- curve di resistenza nel tempo (almeno per il periodo 3-28 giorni, salvo indicazioni differenti da parte della Direzione Lavori);
- caratteristiche dell'impianto di confezionamento e stato delle tarature;
- sistemi di trasporto, di posa in opera e maturazione dei getti.

La relazione di prequalifica, per ogni classe di conglomerato cementizio che figura in tabella I, dovrà essere sottoposta all'esame della Direzione dei Lavori almeno 30 giorni prima dell'inizio dei relativi getti.

La Direzione Lavori autorizzerà l'inizio dei getti di conglomerato cementizio solo dopo aver esaminato ed approvato detta relazione e dopo aver effettuato, in contraddittorio con l'Impresa, impasti di prova del calcestruzzo per la verifica dei requisiti di cui alla tabella I. Per la preparazione, la forma, le dimensioni e la stagionatura dei provini di calcestruzzo vale quanto indicato nelle norme UNI EN 12390-1:2002 e UNI EN 12390-2:2002. Circa il procedimento da seguire per la determinazione della resistenza a compressione dei provini vale quanto indicato nelle norme UNI EN 12390-3:2003 e UNI EN 12390-4:2002.

Le miscele verranno autorizzate qualora la resistenza a compressione media per ciascun tipo di conglomerato cementizio, misurata a 28 giorni sui provini prelevati dagli impasti di prova all'impianto di confezionamento, non si discosti di 10% dal valore indicato nella relazione di prequalifica.

I laboratori, il numero dei campioni e le modalità di prova saranno quelli indicati dalla Direzione Lavori. In conformità al § 11.2.3 del DM 14-01-2008 si ribadisce che la responsabilità della qualità finale del calcestruzzo, che sarà controllata dalla Direzione Lavori secondo le procedure di cui al punto 6.2.1, resta comunque in capo all'Impresa.

Caratteristiche dei materiali e composizione degli impasti, definite in sede di prequalifica, non potranno essere modificati in corso d'opera. Qualora eccezionalmente si prevedesse una variazione dei materiali, la procedura di prequalifica dovrà essere ripetuta.

Calcestruzzo prodotto con processo industrializzato

Tale situazione è contemplata dal DM 14-01-2008 al § 11.2.8, dove si definisce come calcestruzzo prodotto con processo industrializzato il conglomerato realizzato mediante impianti, strutture e tecniche organizzate sia all'interno del cantiere che in uno stabilimento esterno al cantiere stesso.

Di conseguenza in questa fattispecie rientrano, a loro volta, due tipologie di produzione del calcestruzzo: calcestruzzo prodotto in impianti industrializzati fissi esterni al cantiere (impianti di preconfezionamento o di prefabbricazione);

calcestruzzo prodotto in impianti industrializzati installati nei cantieri (temporanei).

In questi casi gli impianti devono essere idonei ad una produzione costante, disporre di apparecchiature adeguate per il confezionamento, nonché di personale esperto e di attrezzature idonee a provare, valutare e correggere la qualità del prodotto.

Al fine di contribuire a garantire quest'ultimo punto, gli impianti devono essere dotati di un sistema di controllo permanente della produzione allo scopo di assicurare che il prodotto abbia i requisiti previsti dal DM 14-01-2008 e che tali requisiti siano costantemente mantenuti fino alla posa in opera.

Tale sistema di controllo, chiamato "controllo della produzione in fabbrica", deve essere riferito a ciascun impianto ed è sostanzialmente differente dall'ordinario sistema di gestione della qualità aziendale al quale, tuttavia, può essere affiancato.

Il sistema di controllo dovrà essere certificato da un organismo terzo indipendente di adeguata competenza e organizzazione, autorizzato dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici, e che operi in coerenza con la UNI EN 45012. Quale riferimento per tale certificazione devono essere prese le Linee Guida sul calcestruzzo preconfezionato edite dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici allo scopo di ottenere un calcestruzzo di adeguate caratteristiche reologiche, chimiche e meccaniche.

Il sistema di controllo di produzione in fabbrica dovrà comprendere le prove di autocontrollo, effettuate a cura del produttore secondo quanto previsto dalle Linee Guida sul calcestruzzo preconfezionato. L'organismo di certificazione, nell'ambito dell'ispezione delle singole unità produttive, procederà a verificare anche i laboratori utilizzati per le prove di autocontrollo interno. In virtù di tale verifica e sorveglianza del controllo di produzione le prove di autocontrollo della produzione sono sostitutive di quelle effettuate presso i laboratori di cui all'art. 59 del DPR n.380/2001.

L'Impresa dovrà soltanto consegnare alla Direzione Lavori, prima dell'inizio dei getti, copia dell'attestato di certificazione del sistema di controllo di produzione in fabbrica; qualora le forniture provengano da impianti di preconfezionamento esterni al cantiere ed estranei all'Impresa, quest'ultima sarà tenuta a richiedere copia dell'attestato di cui sopra al produttore di calcestruzzo.

La Direzione Lavori verificherà quindi che i documenti accompagnatori di ciascuna fornitura in cantiere riportino gli estremi della certificazione del sistema di controllo della produzione.

Ove opportuno la Direzione dei Lavori potrà comunque richiedere la relazione preliminare di qualifica ed i relativi allegati (ad es. certificazione della marcatura CE dei materiali costituenti).

CONTROLLI IN CORSO D'OPERA

La Direzione Lavori eseguirà controlli periodici in corso d'opera per verificare la corrispondenza delle caratteristiche dei materiali e degli impasti impiegati con quelle descritte al punto successivo, definite nella tabella I e garantite in sede di qualifica.

Per consentire l'effettuazione delle prove in tempi congruenti con le esigenze di avanzamento dei lavori, l'Impresa dovrà disporre di uno o più laboratori attrezzati per l'esecuzione delle prove previste, in cantiere e/o presso l'impianto di confezionamento, ad eccezione delle eventuali determinazioni chimiche e dei controlli dovranno essere eseguite presso laboratori di cui all'art. 59 del DPR n. 380/2001.

CARATTERISTICHE DEL CALCESTRUZZO ALLO STATO FRESCO E INDURITO

Reologia degli impasti e granulometrìa degli aggregati

Gli aggregati per il confezionamento del calcestruzzo, oltre a soddisfare le prescrizioni precedentemente riportate, dovranno appartenere a non meno di tre classi granulometriche diverse. La percentuale di impiego di ogni singola classe granulometrica verrà stabilita dal produttore con l'obiettivo di conseguire la massima densità dell'impasto, garantendo i requisiti di lavorabilità e di resistenza alla segregazione di cui ai punti seguenti. La curva granulometrica ottenuta dalla combinazione degli aggregati disponibili, inoltre, sarà quella capace di soddisfare le esigenze di posa in opera richieste dall'impresa (ad esempio il pompaggio), quelle di resistenza meccanica a compressione e di durabilità richieste per il conglomerato.

La dimensione nominale massima dell'aggregato (Dmax) è funzione delle dimensioni dei copri ferri ed interferri, delle caratteristiche geometriche delle casseforme, delle modalità di getto e del tipo di mezzi d'opera. Essa sarà definita dalle prescrizioni di progetto per ciascuna tipologia di calcestruzzo (cfr. tabella I).

Resistenza dei conglomerati cementizi

Si farà riferimento alle norme tecniche per le costruzioni di cui al DM 14-01-2008. In particolare, relativamente alla resistenza caratteristica convenzionale a compressione, il calcestruzzo verrà individuato mediante la simbologia C (X/Y) dove X è la resistenza caratteristica a compressione misurata su provini cilindrici (fck) con rapporto altezza/diametro pari a 2 ed Y è la resistenza caratteristica a compressione valutata su provini cubici di lato 150 mm (Rck).

Controlli di accettazione

La Direzione dei Lavori eseguirà i controlli di accettazione, secondo le modalità e la frequenza indicate ai §§ 11.2.2, 11.2.4 e 11.2.5 del DM 14-01-2008, su miscele omogenee di conglomerato come definite al §11.2.1 del citato Decreto.

I controlli saranno classificati come segue:

tipo A;

tipo B (impiegato soltanto quando siano previsti quantitativi di miscela omogenea uguali o superiori ai 1500 m3)

Il prelievo del conglomerato per i controlli di accettazione si deve eseguire all'uscita della betoniera (non prima di aver scaricato almeno 0.3 m3 di conglomerato e possibilmente a metà del carico), conducendo tutte le operazioni in conformità con le prescrizioni indicate nel DM 14-01-2008 e nella norma UNI-EN 206-1.

Il prelievo di calcestruzzo dovrà essere sempre eseguito alla presenza di un incaricato della Direzione dei Lavori.

In particolare i campioni di calcestruzzo devono essere preparati con casseforme rispondenti alla norma UNI EN 12390-1, confezionati secondo le indicazioni riportate nella norma UNI EN 12390-2 e provati presso un laboratorio Ufficiale secondo la UNI EN 12390-3.

Le casseforme devono essere realizzate con materiali rigidi al fine di prevenire deformazioni durante le operazioni di preparazione dei provini, devono essere a tenuta stagna e non assorbenti.

La geometria delle casseforme deve essere cubica di lato pari a 150 mm o cilindrica con diametro pari a 150 mm ed altezza pari a 300 mm.

Sulla superficie dei provini sarà applicata (annegandola nel calcestruzzo) un'etichetta di plastica/cartoncino rigido sulla quale verrà riportata l'identificazione del campione con inchiostro indelebile; l'etichetta sarà siglata dalla Direzione Lavori al momento del confezionamento dei provini.

L'esecuzione del campionamento deve essere accompagnata dalla stesura di un verbale di prelievo che iporti le seguenti indicazioni:

- 1. Identificazione del campione:
- tipo di calcestruzzo;
- numero di provini effettuati;
- codice del prelievo;
- metodo di compattazione adottato;
- numero del documento di trasporto;

- ubicazione del getto per il puntuale riferimento del calcestruzzo messo in opera (es. muro di sostegno, solaio di copertura, soletta di ponte, ecc.);
- 2. Identificazione del cantiere e dell'Impresa appaltatrice;
- 3. Data e ora di confezionamento dei provini;
- 4. Firma della D.L.

Al termine del prelievo i provini verranno conservati in adeguate strutture predisposte dall'Impresa in ottemperanza del punto 5 del presente Capitolato, appoggiati al di sopra di una superficie orizzontale piana in posizione non soggetta ad urti e vibrazioni.

Il calcestruzzo campionato deve essere lasciato all'interno delle casseforme per almeno 16 h (in ogni caso non oltre i 3 giorni). Trascorso questo termine i provini dovranno essere consegnati presso il Laboratorio incaricato di effettuare le prove di schiacciamento, ove si provvederà alla loro conservazione, una volta rimossi dalle casseforme, in acqua alla temperatura costante di 20±2 °C oppure in ambiente termostatato posto alla temperatura di 20±2 °C ed umidità relativa superiore al 95%.

Nel caso in cui i provini vengano conservati immersi nell'acqua, il contenitore deve avere dei ripiani realizzati con griglie (è consentito l'impiego di reti elettrosaldate) per fare in modo che tutte le superfici siano a contatto con l'acqua.

L'Impresa sarà responsabile delle operazioni di corretta conservazione dei provini campionati e della loro custodia in cantiere prima dell'invio al Laboratorio, nonché del trasporto e della consegna dei provini di calcestruzzo presso detto Laboratorio unitamente ad una domanda ufficiale di richiesta prove sottoscritta dalla Direzione Lavori, la quale indicherà la posizione e il tipo di strutture interessate da ciascun prelievo. I certificati emessi dal Laboratorio dovranno contenere tutte le informazioni richieste al § 11.2.5.3 del DM 14-01-2008.

Prove complementari

Qualora la Direzione dei Lavori, per esigenze legate alla logistica di cantiere, alla rapida messa in servizio di una struttura o di porzioni di essa o alla messa in tensione dei cavi di precompressione, dovesse prescrivere l'ottenimento di un determinato valore della resistenza caratteristica in tempi inferiori ai canonici 28 giorni o a temperature di maturazione diverse dai 20 °C, oltre al numero di provini previsti per ciascun controllo di accettazione (di cui al punto 6.2.1) sarà confezionata un'ulteriore coppia di provini con le medesime modalità, fatta eccezione per le regole di conservazione dei campioni.

Essi, infatti, saranno maturati in adiacenza alla struttura o all'elemento strutturale per il quale è stato richiesto un valore della resistenza caratteristica a tempi e/o temperature inferiori ai valori suindicati.

Si specifica che tali prove complementari non potranno in alcun caso sostituire i "controlli di accettazione"

Controllo della resistenza del calcestruzzo in opera

Nel caso in cui uno o più controlli di accettazione non dovessero risultare soddisfatti, oppure sorgano dubbi sulla qualità e rispondenza ai valori di resistenza prescritti del calcestruzzo già messo in opera, la Direzione Lavori procederà ad una valutazione delle caratteristiche di resistenza attraverso una serie di prove sia distruttive che non distruttive. Tali prove non devono, in ogni caso, intendersi sostitutive dei controlli di accettazione (§ 11.2.6 del DM 14-01-2008).

Il valor medio della resistenza del calcestruzzo in opera (definita come resistenza strutturale) è in genere inferiore al valor medio della resistenza dei prelievi in fase di getto maturati in laboratorio (definita come resistenza potenziale).

È accettabile un valore medio della resistenza strutturale (Rm,STIM), misurata con le tecniche distruttive e/o non distruttive ritenute più opportune da parte della D.L. e debitamente trasformata in resistenza cilindrica o cubica, non inferiore all'85% del valore medio definito in fase di progetto secondo il DM 14-01-2008.

Per la modalità di determinazione della resistenza strutturale si farà riferimento alle norme UNI EN 12504-1:2002, UNI EN 12504-2:2001, UNI EN 12504-3:2005, UNI EN 12504-4:2005 nonché alle Linee Guida per la messa in opera del calcestruzzo strutturale e per la valutazione delle caratteristiche meccaniche del calcestruzzo indurito mediante prove non distruttive pubblicate dal Servizio Tecnico Centrale del Consiglio Superiore dei LL.PP.

Qualora dalle prove in opera non risultasse verificata la condizione succitata si procederà, a cura e spese dell'Impresa, ad un controllo teorico e/o sperimentale della struttura interessata dal quantitativo di

conglomerato non conforme sulla base del valore caratteristico della resistenza strutturale rilevata sullo stesso (Rk,STIM).

Tali controlli e verifiche formeranno oggetto di una relazione supplementare nella quale si dimostri che, ferme restando le ipotesi di vincoli e di carico delle strutture, la resistenza è ancora compatibile con le sollecitazioni previste in progetto, secondo le prescrizioni delle vigenti norme di legge.

Se tale relazione sarà approvata dalla Direzione Lavori il calcestruzzo verrà contabilizzato in base al valore della resistenza caratteristica rilevata in opera.

Viceversa, nel caso in cui la resistenza non risulti compatibile con le sollecitazioni previste in progetto, la Direzione dei Lavori valuterà come procedere in base alle seguenti ipotesi:

- consolidamento dell'opera o delle parti interessate da non conformità, se ritenuto tecnicamente possibile dalla D.L. sentito il progettista, con i tempi e i metodi che questa potrà stabilire anche su proposta dell'Impresa. Resta inteso che la decisione finale sarà in capo alla D.L.;
- demolizione e rifacimento dell'opera o delle parti interessate da non conformità.

Tutti gli oneri relativi agli accertamenti di cui sopra, compresi gli eventuali consolidamenti, demolizioni e ricostruzioni, restano in capo all'Impresa.

Nessun indennizzo o compenso sarà dovuto all'Impresa nel caso in cui il valore caratteristico della resistenza strutturale dovesse risultare maggiore di quella indicata nei calcoli statici, nei disegni di progetto e in tabella I della presente Sezione.

Si specifica, inoltre, che la conformità nei riguardi della resistenza non implica necessariamente la conformità nei riguardi della durabilità o di altre caratteristiche specifiche del calcestruzzo messo in opera; pertanto, qualora non fossero rispettate le richieste di durabilità, la Direzione Lavori potrà ordinare all'Impresa di mettere in atto tutti gli accorgimenti (ad es. ricoprimento delle superfici con guaine, protezione con vernici o agenti chimici nebulizzati, ecc.) che saranno ritenuti opportuni e sufficienti alla garanzia della vita nominale dell'opera prevista dal progetto.

Tutti gli oneri derivanti dagli interventi anzidetti saranno a carico dell'Impresa.

Pianificazione delle prove in opera

Le aree di prova, da cui devono essere estratti i campioni o sulle quali saranno eseguite le prove non distruttive, devono essere scelte in modo da permettere la valutazione della resistenza meccanica della struttura o di una sua parte interessata all'indagine. Le aree ed i punti di prova debbono essere preventivamente identificati e selezionati in relazione agli obiettivi: pertanto si farà riferimento al giornale dei lavori ed eventualmente al registro di contabilità per identificare correttamente le strutture o porzioni di esse interessate dalle non conformità.

La dimensione e la localizzazione dei punti di prova dipendono dal metodo prescelto, mentre il numero di prove da effettuare dipende dall'affidabilità desiderata nei risultati. La definizione e la divisione in regioni di prova, di una struttura, presuppongono che i prelievi o i risultati di una regione appartengano statisticamente e qualitativamente ad una medesima popolazione di calcestruzzo.

Nel caso in cui si voglia valutare la capacità portante di una struttura le regioni di prova devono essere concentrate nelle zone più sollecitate, mentre nel caso in cui si voglia valutare il tipo o l'entità di un danno, le regioni di prova devono essere concentrate nelle zone dove si è verificato il danno o si suppone sia avvenuto.

Predisposizione delle aree di prova

Le aree e le superfici di prova vanno predisposte in relazione al tipo di prova che s'intende eseguire, facendo riferimento al fine cui le prove sono destinate, alle specifiche norme, contestualmente alle indicazioni del produttore dello strumento di prova. In linea di massima e salvo quanto sopra indicato, le aree di prova devono essere prive sia di evidenti difetti (vespai, vuoti, occlusioni, ...) che possano inficiare il risultato e la significatività delle prove stesse, sia di materiali estranei al calcestruzzo (intonaci, collanti, impregnanti, ...), sia di polvere ed impurità in genere.

L'eventuale presenza di materiale estraneo e/o di anomalie sulla superficie non rimovibili deve essere registrata sul verbale di prelievo e/o di prova.

In relazione alla finalità dell'indagine, i punti di prelievo o di prova devono essere localizzati in modo puntuale, qualora si voglia valutare le proprietà di un elemento oggetto d'indagine, o casuale, per valutare una partita di calcestruzzo indipendentemente dalla posizione.

Lavorabilità

Il produttore del calcestruzzo dovrà adottare tutti gli accorgimenti in termini di ingredienti e di composizione dell'impasto per garantire che il calcestruzzo possegga, al momento della consegna in cantiere, la lavorabilità prescritta in progetto e riportata per ogni specifica tipologia di conglomerato nella tabella I.

Salvo diverse specifiche e/o accordi con la Direzione dei Lavori la lavorabilità al momento del getto

verrà controllata all'atto del prelievo dei campioni per i controlli d'accettazione della resistenza caratteristica convenzionale a compressione secondo le indicazioni riportate al punto 6.2.1. La misura della lavorabilità verrà condotta in accordo alla UNI-EN 206-1 dopo aver proceduto a scaricare dalla betoniera almeno 0,3 m3 di calcestruzzo, e sarà effettuata mediante differenti metodologie.

In particolare la lavorabilità del calcestruzzo dovrà essere definita mediante:

Il valore dell'abbassamento al cono di Abrams (UNI-EN 12350-2) che definisce la classe di consistenza o uno slump numerico di riferimento oggetto di specifica, per abbassamenti fino a 230mm;

la misura del diametro di spandimento alla tavola a scosse (UNI-EN 12350-5), per abbassamenti superiori a 230 mm.

Se il conglomerato cementizio viene pompato il valore della lavorabilità dovrà essere misurato prima dell'immissione nella pompa, fermo restando quanto specificato al punto 8.2.

Sarà cura del fornitore garantire in ogni situazione la classe di consistenza prescritta per le diverse miscele tenendo conto che è assolutamente vietata qualsiasi aggiunta di acqua in betoniera al momento del getto dopo l'inizio dello scarico del calcestruzzo dall'autobetoniera. La classe di consistenza prescritta verrà garantita per un intervallo di tempo di 30 minuti dall'arrivo della betoniera in cantiere. Trascorso questo tempo sarà l'Impresa unica responsabile della eventuale minore lavorabilità rispetto a quella prescritta. Il calcestruzzo con lavorabilità inferiore potrà essere a discrezione della Direzione Lavori:

- respinto (l'onere della nuova fornitura in tal caso resta in capo all'Impresa);
- accettato se esistono le condizioni, in relazione alla difficoltà di esecuzione del getto, per poter conseguire un completo riempimento dei casseri ed una completa compattazione; tutti gli oneri derivanti dalla maggior richiesta di compattazione restano a carico dell'Impresa.

Il tempo massimo consentito dalla produzione dell'impasto in impianto al momento del getto non dovrà superare i 90 minuti e sarà onere del produttore riportare nel documento di trasporto l'orario effettivo di fine carico della betoniera in impianto. Si potrà operare in deroga a questa prescrizione in casi eccezionali quando i tempi di trasporto del calcestruzzo dall'impianto al cantiere dovessero risultare superiori ai 75 minuti. In questa evenienza si potrà utilizzare il conglomerato fino a 120 minuti dalla miscelazione purché esso possegga i requisiti di lavorabilità e resistenza iniziale prescritti.

Rapporto acqua/cemento

Il quantitativo di acqua efficace da prendere in considerazione nel calcolo del rapporto a/c equivalente è quello realmente a disposizione dell'impasto, dato dalla somma di:

(aaggr): quantitativo di acqua ceduto o sottratto dall'aggregato se caratterizzato rispettivamente da un tenore di umidità maggiore o minore dell'assorbimento (cioè del tenore di umidità che individua la condizione di saturo a superficie asciutta);

(aadd): aliquota di acqua introdotta tramite gli additivi liquidi (se utilizzati in misura superiore a 3 l/m3) o le aggiunte minerali in forma di slurry;

(am): aliquota di acqua introdotta nel mescolatore/autobetoniera; ottenendo la formula:

$$a_{\mathit{eff}} = a_{\mathit{m}} + a_{\mathit{agg}} + a_{\mathit{add}}$$

Il rapporto acqua/cemento sarà quindi da considerarsi come un rapporto acqua/cemento equivalente individuato dall'espressione più generale:

$$\left(\frac{a}{c}\right)_{eq} = \frac{a_{eff}}{(c + K_{cv} * cv + K_{fs} * fs)}$$

nella quale vengono considerate le eventuali aggiunte di ceneri volanti o fumi di silice all'impasto nell'impianto di betonaggio.

I termini utilizzati nell'espressione precedente sono:

c: dosaggio di cemento per m3 di impasto;

cv: dosaggio di cenere volante per m3 di impasto;

fs: dosaggio di fumo di silice per m3 di impasto;

Kcv; Kfs: coefficienti di equivalenza rispettivamente della cenere volante e del fumo di silice desunti dalle norme UNI-EN 206-1 ed UNI 11104 (cfr. punti 3.2.1 e 3.2.2).

Contenuto di aria

Qualora sia prevista una classe di esposizione ambientale di tipo XF (strutture soggette a cicli di gelo/disgelo in presenza o meno di sali disgelanti) e quindi sarà impiegato un additivo aerante, contestualmente alla misura della lavorabilità del conglomerato dovrà essere determinato il contenuto di aria nel calcestruzzo in accordo alla procedura descritta alla norma UNI EN 12350-7 basata sull'impiego del porosimetro.

Il contenuto di aria in ogni miscela prodotta (espresso in percentuale) dovrà essere conforme a quanto prescritto nella tabella I, tenendo conto delle tolleranze ammesse ivi riportate.

Acqua di bleeding

L'essudazione di acqua dovrà risultare non superiore allo 0,1% in conformità alla norma UNI 7122.

PRESCRIZIONI PER LA DURABILITÀ DEI CONGLOMERATI CEMENTIZI

Secondo il DM 14-01-2008 la durabilità delle opere in calcestruzzo è la capacità di mantenere entro limiti accettabili per le esigenze di esercizio i valori delle caratteristiche fisico-meccaniche e funzionali in presenza di cause di degradazione, per tutta la vita nominale prevista in progetto.

Le cause di degradazione più frequenti sono i fenomeni di corrosione delle armature, i cicli di gelodisgelo, l'attacco di acque aggressive di varia natura e la presenza di solfati.

Secondo quanto previsto nel § 11.2.11 del DM 14-01-2008, il progettista, valutate opportunamente le condizioni ambientali di impiego dei calcestruzzi, deve fissare le prescrizioni in termini di caratteristiche del calcestruzzo da impiegare, di valori del copriferro e di regole di maturazione dei getti.

Al fine di soddisfare le richieste di durabilità in funzione delle condizioni ambientali occorrerà fare riferimento alle norme UNI EN 206-1 ed UNI 11104.

In particolare, ai fini di preservare le armature metalliche da qualsiasi fenomeno di aggressione ambientale, lo spessore di copriferro da prevedere in progetto, cioè la misura tra la parete interna del cassero e la parte più esterna della circonferenza della barra più vicina, dovrà rispettare allo stesso tempo le indicazioni della UNI EN 1992-1-1 (Eurocodice 2) al § 4.4.1, garantire l'aderenza e la trasmissione degli sforzi tra acciaio e calcestruzzo e, se del caso, assicurare la resistenza al fuoco della struttura o dei singoli elementi interessati. Tale prescrizione dovrà essere applicata anche a tutti gli elementi prefabbricati e/o precompressi.

TECNOLOGIA ESECUTIVA DELLE OPERE

Per quanto non esplicitamente indicato nella presente sezione e in progetto, in ottemperanza al § 4.1.7 del DM 14-01-2008, si farà riferimento alla norma UNI EN 13670-1 "Esecuzione di strutture in calcestruzzo: requisiti comuni" ed alle "Linee Guida per la messa in opera del calcestruzzo strutturale e per la valutazione delle caratteristiche meccaniche del calcestruzzo" pubblicate dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici (febbraio 2008).

Confezione dei conglomerati cementizi

La confezione dei conglomerati cementizi non prodotti con processo industrializzato dovrà essere eseguita con gli impianti preventivamente sottoposti all'esame della Direzione Lavori, conformi alle Linee Guida sul calcestruzzo preconfezionato edite dal Servizio Tecnico Centrale del Consiglio Superiore dei LL.PP., nonché alle caratteristiche seguenti per quanto applicabili.

Qualora il calcestruzzo sia prodotto con processo industrializzato non occorrerà alcun esame preventivo da parte della Direzione Lavori, la quale si limiterà ad acquisire la documentazione indicata.

Trasporto

Il trasporto dei conglomerati cementizi dall'impianto di betonaggio al luogo di impiego dovrà essere effettuato con mezzi idonei al fine di evitare la possibilità di segregazione dei singoli componenti e comunque tali da evitare ogni possibilità di deterioramento del calcestruzzo medesimo.

Per quanto non specificato nel seguito, si farà riferimento alle Linee Guida sul calcestruzzo preconfezionato del Servizio Tecnico Centrale del Consiglio Superiore dei LL.PP.

Saranno accettate in funzione della durata e della distanza di trasporto, le autobetoniere e le benne a scarico di fondo ed, eccezionalmente, i nastri trasportatori.

Ciascuna fornitura di calcestruzzo dovrà essere accompagnata da un documento di trasporto (bolla) conforme alle specifiche del § 7.3 della UNI EN 206-1 sul quale dovranno essere riportati almeno:

data e ora di produzione;

data e ora di arrivo in cantiere, di inizio scarico e di fine scarico;

classe o classi di esposizione ambientale:

classe di resistenza caratteristica del conglomerato;

tipo, classe e dosaggio di cemento;

dimensione massima nominale dell'aggregato;

classe di consistenza o valore numerico di riferimento:

classe di contenuto in cloruri;

quantità di conglomerato trasportata;

la struttura o l'elemento strutturale cui il carico è destinato.

L'Impresa dovrà esibire detta documentazione alla Direzione dei Lavori.

L'uso delle pompe sarà consentito a condizione che l'Impresa adotti, a sua cura e spese, provvedimenti idonei a mantenere il valore prestabilito del rapporto acqua/cemento del conglomerato cementizio alla bocca di uscita della pompa.

Non saranno ammessi gli autocarri a cassone o gli scivoli.

È facoltà della Direzione Lavori rifiutare carichi di conglomerato cementizio non rispondenti ai requisiti prescritti.

Posa in opera

Le operazioni di getto potranno essere avviate solo dopo la verifica degli scavi, delle casseforme e delle armature metalliche da parte della Direzione Lavori.

Al momento della messa in opera del conglomerato è obbligatoria la presenza di almeno un membro dell'ufficio della Direzione dei Lavori incaricato a norma di legge e di un responsabile tecnico dell'Impresa.

Prima di procedere alla messa in opera del calcestruzzo, sarà necessario adottare tutti quegli accorgimenti atti ad evitare qualsiasi sottrazione di acqua dall'impasto.

I getti dovranno risultare perfettamente conformi ai particolari costruttivi di progetto ed alle prescrizioni della Direzione Lavori; nel caso di getti contro terra, roccia, ecc., occorre controllare che la pulizia del sottofondo, il posizionamento di eventuali drenaggi, la stesura di materiale isolante o di collegamento siano eseguiti in conformità alle disposizioni di progetto e delle presenti Norme.

Lo scarico del calcestruzzo dal mezzo di trasporto nelle casseforme si effettua applicando tutti gli accorgimenti atti ad evitare la segregazione.

L'altezza di caduta libera del calcestruzzo fresco, indipendentemente dal sistema di movimentazione e getto, non deve eccedere i 50 centimetri; si utilizzerà un tubo di getto che si accosti al punto di posa o, meglio ancora, che si inserisca nello strato fresco già posato e consenta al calcestruzzo di rifluire all'interno di quello già steso.

Per la compattazione del getto verranno adoperati vibratori a parete o ad immersione. Nel caso si adoperi il sistema di vibrazione ad immersione, l'ago vibrante deve essere introdotto verticalmente e spostato, da punto a punto nel calcestruzzo, ogni 50 cm circa; la durata della vibrazione verrà protratta nel tempo in funzione della classe di consistenza del calcestruzzo (tabella III).

Classe di consistenza	Tempo minimo di immersione dell'ago nel calcestruzzo (s)				
S1	25 - 30				
S2	20 - 25				
S3	15 - 20				
S4	10 - 15				
S 5	5 - 10				
F 6	0 - 5				
SCC	Non necessita compattazione (salvo indicazioni specifiche della D.L.)				

Tabella III - Relazione tra classe di consistenza e tempo di vibrazione del conglomerato

Il conglomerato cementizio sarà posto in opera e assestato con ogni cura in modo che le superfici esterne si presentino lisce e compatte, omogenee e perfettamente regolari ed esenti anche da macchie o chiazze.

I distanziatori utilizzati per garantire i copriferri ed eventualmente le reciproche distanze tra le barre di armatura, dovranno essere in plastica o a base di malta cementizia di forma e geometria tali da minimizzare la superficie di contatto con il cassero.

Dal giornale lavori del cantiere dovrà risultare la data di inizio e di fine dei getti e del disarmo.

Se il getto dovesse essere effettuato durante la stagione invernale, l'Impresa dovrà tenere registrati giornalmente i minimi di temperatura desunti da un apposito termometro esposto nello stesso cantiere di lavoro.

Per la finitura superficiale di solette e pavimentazioni è prescritto l'uso di piastre vibranti o attrezzature equivalenti; la regolarità dei getti dovrà essere verificata con un'asta rettilinea della lunghezza di 2,00 m, che in ogni punto dovrà aderirvi uniformemente nelle due direzioni longitudinale e trasversale; saranno tollerati unicamente scostamenti inferiori a 10 mm.

Quando il getto deve essere gettato in presenza d'acqua si dovranno adottare tutti gli accorgimenti, approvati dalla Direzione Lavori, necessari ad impedire che l'acqua ne dilavi le superfici e ne pregiudichi la normale maturazione.

Posa in opera in climi freddi

Le operazioni di getto del conglomerato cementizio dovranno essere sospese nel caso in cui la temperatura dell'aria scenda al di sotto di 278 K (5 °C) se l'impianto di betonaggio non è dotato di un adeguato sistema di preriscaldamento degli inerti o dell'acqua tale da garantire che la temperatura dell'impasto, al momento del getto, sia superiore a 287 K (14 °C). In alternativa è possibile utilizzare, sotto la responsabilità dell'Impresa, additivi acceleranti di presa conformi alla UNI EN 934-2 e, se autorizzati dalla D.L., opportuni additivi antigelo.

Oltre alle succitate precauzioni occorrerà mettere in atto particolari sistemi di protezione del manufatto concordati e autorizzati dalla D.L. per evitare una dispersione termica troppo rapida.

I getti all'esterno dovranno comunque essere sospesi qualora la temperatura scenda al di sotto di 263 K (-10 °C)

In ogni caso, prima di dare inizio ai getti, è fatto obbligo di verificare che non siano congelate o innevate le superfici di fondo o di contenimento del getto.

Al fine di poter mettere in atto correttamente e verificare le prescrizioni riguardanti le temperature di getto, occorre che in cantiere sia esposto un termometro in grado di indicare le temperature minime e massime giornaliere.

Posa in opera in climi caldi

Se durante le operazioni di getto la temperatura dell'aria supera i 306 K (33 °C), la temperatura dell'impasto dovrà essere mantenuta entro i 298 K (25 °C): per i getti massivi (di cui al punto 8.7) tale limite dovrà essere convenientemente diminuito.

Al fine di abbassare la temperatura del calcestruzzo potrà essere usato ghiaccio in sostituzione di parte dell'acqua di impasto, avendo cura di computarne l'esatta quantità nel calcolo del rapporto a/c (di cui al punto 1.6.4) affinché il valore prescritto non subisca alcuna variazione.

Per ritardare la presa e per facilitare la posa e la finitura del conglomerato cementizio potranno essere eventualmente impiegati additivi ritardanti di presa preventivamente autorizzati dalla Direzione Lavori. Anche in questo caso il manufatto dovrà essere adeguatamente protetto per evitare eccessive variazioni termiche tra l'interno e la parte corticale dei getti.

Riprese di getto

La Direzione Lavori avrà la facoltà di prescrivere, ove e quando lo ritenga necessario, che i getti vengano eseguiti senza soluzione di continuità così da evitare ogni ripresa, anche se ciò comportasse il protrarsi del lavoro in giornate festive e la conduzione a turni. In nessun caso l'Impresa potrà avanzare richieste di maggiori compensi.

Qualora debbano essere previste riprese di getto sarà obbligo dell'Impresa procedere ad una preliminare rimozione, mediante scarifica con martello, dello strato corticale di calcestruzzo già parzialmente indurito. Tale superficie, che dovrà possedere elevata rugosità (asperità di circa 5 mm) verrà opportunamente pulita e bagnata per circa due ore prima del getto del nuovo strato di calcestruzzo.

Qualora alla struttura sia richiesta la tenuta idraulica, lungo la superficie scarificata verranno disposti dei giunti tipo "water-stop" in materiale bentonitico idroespansivo. I profili "water-stop" saranno opportunamente fissati e disposti secondo le indicazioni progettuali e della Direzione Lavori, in maniera tale da non interagire con le armature.

Tra le diverse riprese di getto non dovranno presentarsi distacchi, discontinuità o differenze di aspetto e colore.

Casseforme

Per tali opere provvisorie l'Impresa comunicherà preventivamente alla Direzione Lavori il sistema e le modalità esecutive che intende adottare, ferma restando l'esclusiva responsabilità dell'Impresa stessa per quanto riguarda la progettazione e l'esecuzione di tali opere provvisionali e la loro rispondenza a tutte le norme di legge ed ai criteri di sicurezza che comunque possono riguardarle. Il sistema prescelto dovrà comunque essere atto a consentire la realizzazione delle opere in conformità alle disposizioni contenute nel progetto esecutivo.

Nella progettazione e nella esecuzione delle armature di sostegno delle centinature e delle attrezzature di costruzione, l'appaltatore è tenuto a rispettare le norme, le prescrizioni ed i vincoli che eventualmente venissero imposti da Enti, Uffici e persone responsabili riguardo alla zona interessata ed in particolare:

- per l'ingombro degli alvei dei corsi d'acqua;
- per le sagome da lasciare libere nei sovrappassi o sottopassi di strade, autostrade, ferrovie, tranvie, ecc.;
- per le interferenze con servizi di soprassuolo o di sottosuolo.

Tutte le attrezzature dovranno essere dotate degli opportuni accorgimenti affinché, in ogni punto della struttura, la rimozione dei sostegni sia regolare ed uniforme.

Caratteristiche delle casseforme

Per quanto riguarda le casseforme è prescritto l'uso di casseforme metalliche o di materiali fibrocompressi o compensati; in ogni caso esse dovranno avere dimensioni e spessori sufficienti ad essere opportunamente irrigidite o controventate per assicurare l'ottima riuscita delle superfici dei getti e delle opere e la loro perfetta rispondenza ai disegni di progetto.

Nel caso di eventuale utilizzo di casseforme in legno l'Impresa dovrà curare che le stesse siano eseguite con tavole a bordi paralleli e ben accostate in modo che non abbiano a presentarsi, dopo il disarmo, sbavature o disuguaglianze sulle facce in vista del getto. In ogni caso l'Impresa avrà cura di trattare le casseforme, prima del getto, con idonei prodotti disarmanti conformi alla norma UNI 8866; qualora sia previsto l'utilizzo di calcestruzzi colorati o con cemento bianco, l'impiego dei disarmanti dovrà essere subordinato a prove preliminari atte a dimostrare che il prodotto non alteri il colore.

Le parti componenti i casseri debbono essere a perfetto contatto e sigillate con idoneo materiale per evitare la fuoriuscita di boiacca cementizia.

Nel caso di casseratura a perdere, inglobata nell'opera occorre verificare la sua funzionalità, se è elemento portante, e che non sia dannosa, se è elemento accessorio.

Pulizia e trattamento

Prima del getto le casseforme dovranno essere pulite per l'eliminazione di qualsiasi traccia di materiale che possa compromettere l'estetica del manufatto quali polvere, terriccio etc. Dove e quando necessario si farà uso di prodotti disarmanti disposti in strati omogenei continui, su tutte le casseforme di una stessa opera dovrà essere usato il medesimo prodotto.

Nel caso di utilizzo di casseforme impermeabili, per ridurre il numero delle bolle d'aria sulla superficie del getto si dovrà fare uso di disarmante con agente tensioattivo in quantità controllata e la vibrazione dovrà avvenire contemporaneamente al getto.

Predisposizione di fori, tracce e cavità

L'appaltatore avrà l'obbligo di predisporre in corso di esecuzione quanto è previsto nei disegni costruttivi per ciò che concerne fori, tracce, cavità, incassature, etc. per la posa in opera di apparecchi accessori quali giunti, appoggi, smorzatori sismici, pluviali, passi d'uomo, passerelle d'ispezione, sedi di tubi e di cavi, opere interruttive, sicurvia, parapetti, mensole, segnalazioni, parti d'impianti, etc..

Stagionatura e disarmo

Prevenzione delle fessure da ritiro plastico

Il calcestruzzo, al termine della messa in opera e successiva compattazione, deve essere stagionato e protetto dalla rapida evaporazione dell'acqua di impasto e dall'essiccamento degli strati superficiali (fenomeno particolarmente insidioso in caso di elevate temperature ambientali e forte ventilazione).

Per consentire una corretta stagionatura è necessario mantenere costantemente umida la struttura realizzata; l'Impresa è responsabile della corretta esecuzione della stagionatura che potrà essere condotta mediante: la permanenza entro casseri del conglomerato;

l'applicazione, sulle superfici libere, di specifici film di protezione mediante la distribuzione nebulizzata di additivi stagionanti (agenti di curing, conformi alla norma UNI 8656 parti 1 e 2);

l'irrorazione continua del getto con acqua nebulizzata;

la copertura delle superfici del getto con fogli di polietilene, sacchi di iuta o tessuto non tessuto mantenuto umido in modo che si eviti la perdita dell'acqua di idratazione;

la creazione attorno al getto, con fogli di polietilene od altro, di un ambiente mantenuto saturo di umidità;

la creazione, nel caso di solette e getti a sviluppo orizzontale, di un cordolo perimetrale (in sabbia od altro materiale rimovibile) che permetta di mantenere la superficie completamente ricoperta da un costante velo d'acqua.

La costanza della composizione degli agenti di curing dovrà essere verificata, a cura della Direzione Lavori ed a spese dell'Impresa, al momento del loro approvvigionamento.I prodotti filmogeni di protezione non possono essere applicati lungo i giunti di costruzione, sulle riprese di getto o sulle superfici che devono essere trattate e/o ricoperte con altri materiali.

Al fine di assicurare alla struttura un corretto sistema di stagionatura in funzione delle condizioni ambientali, della geometria dell'elemento e dei tempi di scasseratura previsti l'Impresa, previa informazione alla Direzione dei Lavori, eseguirà verifiche di cantiere che assicurino l'efficacia delle misure di protezione adottate.

Sarà obbligatorio procedere alla maturazione dei getti per almeno 3 giorni consecutivi. Qualora dovessero insorgere esigenze particolari per sospendere la maturazione esse dovranno essere espressamente autorizzate dalla Direzione dei Lavori.

Nel caso di superfici orizzontali non casserate (pavimentazioni, platee di fondazione...) dovrà essere effettuata l'operazione di bagnatura continua con acqua non appena il conglomerato avrà avviato la fase di presa. Le superfici verranno mantenute costantemente umide per almeno 3 giorni.

Per i getti confinati entro casseforme l'operazione di bagnatura verrà avviata al momento della rimozione dei casseri, se questa avverrà prima di 3 giorni.

Per calcestruzzi con classe di resistenza a compressione maggiore o uguale di C40/50 la maturazione deve essere curata in modo particolare.

Qualora sulle superfici orizzontali quali solette di ogni genere o pavimentazioni si rilevino fenomeni di ritiro plastico con formazione di fessure di apertura superiore a 0,3 mm, l'Impresa dovrà provvedere a sua cura e spese alla demolizione ed al rifacimento delle strutture danneggiate.

Di norma viene esclusa la accelerazione dei tempi di maturazione con trattamenti termici per i conglomerati gettati in opera. In casi particolari la DL potrà autorizzare l'uso di tali procedimenti dopo l'esame e verifica diretta delle modalità proposte, che dovranno rispettare comunque quanto previsto ai seguenti paragrafi. Resta inteso che durante il periodo della stagionatura i getti dovranno essere riparati da possibilità di urti, vibrazioni e sollecitazioni di ogni genere.

Maturazione accelerata con trattamenti termici

La maturazione accelerata dei conglomerati cementizi con trattamento termico sarà permessa qualora siano state condotte indagini sperimentali sul trattamento termico che si intende adottare.

In particolare, si dovrà controllare che ad un aumento delle resistenze iniziali non corrisponda una resistenza finale minore di quella che si otterrebbe con maturazione naturale.

Dovranno essere rispettate le seguenti prescrizioni:

- 1) la temperatura del conglomerato cementizio, durante le prime 3 h dall'impasto non deve superare i 303 K (30 °C):
- 2) il gradiente di temperatura di riscaldamento e quello di raffreddamento non deve superare 15 K/h (°C/h), e dovranno essere ulteriormente ridotti qualora non sia verificata la condizione di cui al successivo quarto punto:
- 3) la temperatura massima del calcestruzzo non deve in media superare i 333 K (60 °C);
- 4) la differenza di temperatura tra quella massima all'interno del conglomerato cementizio e ambiente a contatto con il manufatto non dovrà superare i 283 K (10 °C)
- 5) Il controllo, durante la maturazione, dei limiti e dei gradienti di temperatura, dovrà avvenire con apposita apparecchiatura che registri l'andamento delle temperature nel tempo sia all'interno che sulla superficie esterna dei manufatti;
- 6) la procedura di controllo di cui al punto precedente, dovrà essere rispettata anche per i conglomerati cementizi gettati in opera e maturati a vapore.

In ogni caso i provini per la valutazione della resistenza caratteristica a 28 giorni, nonché della resistenza raggiunta al momento del taglio dei trefoli o fili aderenti, dovranno essere confezionati secondo quanto indicato al punto 6.2.1 e maturati nelle stesse condizioni termo-igrometriche della struttura.

Disarmo

Si potrà procedere alla rimozione delle casseforme dai getti quando saranno state raggiunte le prescritte resistenze. In assenza di specifici accertamenti, l'Impresa dovrà attenersi a quanto stabilito all'interno delle Norme Tecniche per le Costruzioni (DM 14-01-2008).

Eventuali irregolarità o sbavature, qualora ritenute tollerabili dalla Direzione Lavori a suo insindacabile giudizio, dovranno essere asportate mediante scarifica meccanica o manuale ed i punti incidentalmente difettosi dovranno essere ripresi accuratamente con malta cementizia a ritiro compensato immediatamente dopo il disarmo. Resta inteso che gli oneri derivanti dalle suddette operazioni ricadranno totalmente a carico dell'Impresa.

Quando le irregolarità siano mediamente superiori a 10 mm, la Direzione Lavori ne imporrà la regolarizzazione a totale cura e spese dell'Impresa mediante uno strato di materiali idonei che, a seconda dei casi e ad insindacabile giudizio della Direzione Lavori potrà essere costituito da:

- malta reoplastica a ritiro compensato previa bagnatura a rifiuto delle superfici interessate;
- conglomerato bituminoso del tipo usura fine, per spessori non inferiori a 20 mm.

Eventuali ferri (fili, chiodi, reggette) che con funzione di legatura, di collegamento casseri od altro, dovessero sporgere da getti finiti, dovranno essere tagliati almeno 5 mm sotto la superficie finita e gli incavi risultanti verranno accuratamente sigillati con malta fine di cemento.

Giunti di discontinuità ed opere accessorie nelle strutture in conglomerato cementizio

E' tassativamente prescritto che nelle strutture da eseguire con getto di conglomerato cementizio vengano realizzati giunti di discontinuità sia in elevazione che in fondazione onde evitare irregolari e imprevedibili fessurazioni delle strutture stesse per effetto di escursioni termiche, di fenomeni di ritiro e di eventuali assestamenti.

Tali giunti vanno praticati ad intervalli ed in posizioni opportunamente scelte tenendo anche conto delle particolarità della struttura (gradonatura della fondazione, ripresa fra vecchie e nuove strutture, attacco dei muri andatori con le spalle dei ponti e viadotti, ecc).

I giunti dovranno essere conformi alle indicazioni di progetto e saranno ottenuti ponendo in opera, con un certo anticipo rispetto al getto, appositi setti di materiale idoneo, da lasciare in posto, in modo da realizzare superfici di discontinuità (piane, a battente, a maschio e femmina, ecc.) affioranti faccia a vista secondo linee rette continue o spezzate.

I giunti, come sopra illustrati, dovranno essere realizzati a cura e spese dell'Impresa, essendosi tenuto debito conto di tale onere nella formulazione dei prezzi di elenco relativi alle singole tipologie di conglomerato.

Solo nel caso in cui è previsto in progetto che il giunto sia munito di apposito manufatto di tenuta o di copertura l'elenco prezzi allegato a questo Capitolato prevederà espressamente le voci relative alla speciale conformazione del giunto, unitamente alla fornitura e posa in opera dei manufatti predetti con le specificazioni di tutti i particolari oneri che saranno prescritti per il perfetto definitivo assetto del giunto.

I manufatti di tenuta o di copertura dei giunti possono essere costituiti da elastomeri a struttura etilenica (stirolo butiadene), a struttura paraffinica (bitile), a struttura complessa (silicone poliuretano, poliossipropilene, poliossicloropropilene o da elastomeri etilenici cosiddetti protetti (neoprene).

In luogo dei manufatti predetti, potrà essere previsto l'impiego di sigillanti.

I sigillanti possono essere costituiti da sostanze oleo-resinose, bituminose-siliconiche a base di elastomeri polimerizzabili o polisolfuri che dovranno assicurare la tenuta all'acqua, l'elasticità sotto le deformazioni previste, una aderenza perfetta alle pareti, ottenuta anche a mezzo di idonei primers, non colabili sotto le più alte temperature previste e non rigidi sotto le più basse, mantenendo il più a lungo possibile nel tempo le caratteristiche di cui sopra dopo la messa in opera.

E' tassativamente proibita l'esecuzione di giunti obliqui formanti angolo diedro acuto (muro andatore, spalla ponte obliquo, ecc.).

In tali casi occorre sempre modificare l'angolo diedro acuto in modo tale da formare con le superfici esterne delle opere da giuntare angoli diedri non inferiori ad un angolo retto con facce piane di conveniente larghezza in relazione al diametro massimo degli inerti impiegati nel confezionamento del conglomerato cementizio di ogni singola opera.

Nell'esecuzione dei manufatti contro terra il progetto dovrà tenere conto ,in numero sufficiente ed in posizione opportuna, dell'esecuzione di appositi fori per l'evacuazione delle acque di infiltrazione.

Le indicazioni progettuali saranno il riferimento per l'Impresa, salvo indicazioni differenti da parte della Direzione dei Lavori.

I fori dovranno essere ottenuti mediante preventiva posa in opera nella massa del conglomerato cementizio di tubi a sezione circolare o di profilati di altre sezioni di PVC o simili.

Per la formazione dei fori l'Impresa avrà diritto al compenso previsto nella apposita voce dell'Elenco Prezzi, comprensiva di tutti gli oneri e forniture per dare il lavoro finito a regola d'arte.

Ulteriori prescrizioni per getti massivi

Per opera "massiva" si intende qualunque volume di calcestruzzo con dimensioni tali da richiedere misure preventive per far fronte alla cospicua generazione di calore dovuta all'idratazione del cemento e alle conseguenti fessurazioni dovute cambiamento di volume, sia in fase di riscaldamento che di raffreddamento del getto.

Le seguenti indicazioni si intendono applicabili sia per le strutture di fondazione che per quelle in elevazione. Quando lo spessore della struttura di fondazione (platea, plinto o trave di fondazione) è superiore a 150 cm, il getto deve essere considerato massivo.

Le strutture o parti di struttura in elevazione (pilastri, pile, muri o setti verticali) con spessore o diametro superiore a 80 cm ed altezza di 400 cm saranno considerate opere massive e pertanto anche in questo caso andranno applicate le seguenti prescrizioni aggiuntive.

Innanzitutto il contenuto minimo di cemento (espresso come somma del dosaggio di cemento e di eventuali aggiunte di tipo II - cfr. punto 6.4) dovrà essere adeguatamente stabilito in modo tale che durante il raffreddamento del conglomerato, dopo la rimozione dei casseri, sulla sezione del calcestruzzo non vi sia una differenza di temperatura superiore a 35 °C.

A tale proposito il dosaggio di cemento potrà essere utilmente determinato con la relazione:

$$\delta T_{3,\text{max}} = \frac{c \times q_3}{m \times \rho}$$

nella quale:

 δ T3,,max = 35 °C;

c = dosaggio di cemento e di eventuali aggiunte di tipo II (kg/m3);

q3= calore di idratazione unitario del cemento (kJ/kg) a 3 gg. di maturazione (dato fornito dal produttore di cemento);

m = peso specifico del calcestruzzo (kg/m3);

ρ = calore specifico del calcestruzzo (mediamente pari a 1 kJ/kg °C)

I cementi con i valori di q3 minori sono classificati nella UNI EN 197-1:2007 e sono contraddistinti dalla sigla "LH" (Low Heat).

In ogni caso il getto dovrà rimanere casserato per almeno 4 giorni consecutivi, entro casseri ricoperti dall'esterno con materassini termoisolanti che riducano il gradiente termico tra nucleo e periferia del getto.

Quando le superfici non casserate avranno iniziato la fase di indurimento occorrerà procedere alla stesa dei materassini anche in queste zone.

Sarà obbligatorio procedere alla maturazione dei getti per ulteriori 3 giorni consecutivi alla rimozione dei casseri; qualora dovessero insorgere esigenze particolari per sospendere la maturazione esse dovranno essere espressamente autorizzate dalla D.L.

Qualora per particolari esigenze costruttive si debba procedere con una rapida rimozione delle casseforme (immediatamente dopo le 24 h dal getto, ma comunque sempre su esplicita autorizzazione della Direzione Lavori) la superficie dei getti dovrà essere prontamente ricoperta con fogli di polietilene e tale rimarrà per 7 giorni consecutivi.

Posa in opera delle armature per c.a.

Nella posa in opera delle armature metalliche entro i casseri è prescritto l'impiego di opportuni distanziatori prefabbricati in conglomerato cementizio o in materiale plastico al fine di garantire gli spessori di copriferro previsti in progetto; lungo le pareti verticali si dovrà ottenere il necessario distanziamento esclusivamente mediante l'impiego di distanziatori ad anello; sul fondo dei casseri dovranno essere impiegati distanziatori del tipo approvato dalla Direzione Lavori.

L'uso dei distanziatori dovrà essere esteso anche alle strutture di fondazione armate.

Le gabbie di armatura dovranno essere, per quanto possibile, composte fuori opera; in ogni caso in corrispondenza di tutti i nodi saranno eseguite legature doppie incrociate in filo di ferro ricotto di diametro non inferiore a 0,6 mm, in modo da garantire la invariabilità della geometria della gabbia durante il getto.

L'Impresa dovrà adottare inoltre tutti gli accorgimenti necessari affinché le gabbie mantengano la posizione di progetto all'interno delle casseforme durante le operazioni di getto.

E' a carico dell'Impresa l'onere della posa in opera delle armature metalliche, anche in presenza di acqua o fanghi bentonitici, nonché i collegamenti equipotenziali.

Impermeabilizzazione di manufatti in conglomerato cementizio

Ove i disegni di progetto lo prevedano o quando la Direzione Lavori lo ritenga opportuno si provvederà alla impermeabilizzazione dell'estradosso di manufatti in conglomerato cementizio, interrati e non, quali i volti delle gallerie artificiali, ponti e viadotti, sottovia ecc.

Tale impermeabilizzazione verrà effettuata mediante:

- a) guaine bituminose nel caso in cui i manufatti debbano essere interrati.
- b) con membrane elastiche quando il manufatto debba rimanere scoperto.

I materiali da impiegare dovranno possedere le seguenti caratteristiche: gli strati impermeabilizzanti, oltre che possedere permeabilità all'acqua praticamente nulla, devono essere progettati ed eseguiti in modo da avere:

- elevata resistenza meccanica, specie alla perforazione in relazione sia al traffico di cantiere che alle lavorazioni che seguiranno alla stesa dello strato impermeabilizzante;
- deformabilità, nel senso che il materiale dovrà seguire le deformazioni della struttura senza fessurarsi o distaccarsi dal supporto, mantenendo praticamente inalterate tutte le caratteristiche di impermeabilità e di resistenza meccanica;
- resistenza chimica alle sostanze che possono trovarsi in soluzione o sospensione nell'acqua di permeazione

In particolare dovrà tenersi conto della presenza in soluzione dei cloruri impiegati per uso antigelo;

- durabilità, nel senso che il materiale impermeabilizzante dovrà conservare le sue proprietà per una durata non inferiore a quella della pavimentazione, tenuto conto dell'eventuale effetto di fatica per la ripetizione dei carichi;
- compatibilità ed adesività sia nei riguardi dei materiali sottostanti sia di quelli sovrastanti (pavimentazione);
- altre caratteristiche che si richiedono sono quelle della facilità di posa in opera nelle più svariate condizioni climatiche e della possibilità di un'agevole riparazione locale.

Le suaccennate caratteristiche dell'impermeabilizzazione devono conservarsi inalterate:

- tra le temperature di esercizio che possono verificarsi nelle zone in cui il manufatto ricade e sempre, comunque, tra le temperature di -10° e $+60^{\circ}$ C;
- sotto l'azione degli sbalzi termici e sforzi meccanici che si possono verificare all'atto della stesa delle pavimentazioni o di altri strati superiori.

Dovranno prevedersi prove e controlli di qualità e possibili prove di efficienza.

a) Guaine bituminose

I materiali da usare e le modalità di messa in opera saranno i seguenti:

- pulizia delle superfici: sarà sufficiente una buona pulizia con aria compressa e l'esportazione delle asperità più grosse eventualmente presenti, sigillature e riprese dei calcestruzzi non saranno necessarie; la superfici dovranno avere una stagionatura di almeno 20 giorni ed essere asciutte;
- primer : sarà dello stesso tipo descritto in precedenza e potrà essere dato anche a spruzzo, ad esso seguirà la stesa di circa 0.5 Kg/m^2 ;
- tipo di guaina: sarà preformata, di spessore complessivo pari a 4 mm, l'armatura dovrà avere peso non inferiore a 250 g/m^2 e resistenza non inferiore a 1000-1200 N/5cm, ed una flessibilità a freddo a $-10 \, ^{\circ}\text{C}$, i giunti tra le guaine dovranno avere sovrapposizioni di almeno 5 cm e dovranno essere accuratamente sigillati con la fiamma e spatola meccanica;
- resistenza a punzonamento della guaina o dell'armatura (modalità A₁ o G_a): non inferiore a 10 Kg;
- resistenza a trazione (modalità G₂L e G₂T): 8 Kg/ cm.

La massima cura dovrà essere seguita nella sistemazione delle parti terminali della guaina in modo da impedire infiltrazioni d'acqua al di sotto del manto; la Direzione dei Lavori potrà richiedere l'uso di maggiori

quantità di massa bituminosa da spandere sul primer per una fascia almeno di 1 metro in corrispondenza di questi punti, o altri accorgimenti analoghi per assicurare la tenuta.

Una certa attenzione dovrà essere osservata nella fase di rinterro, evitando di usare a diretto contatto della guaina rocce spigolose di grosse dimensioni.

b) Membrane elastiche

La posa in opera delle membrane verrà preceduta dalla preparazione delle superfici di calcestruzzo da progettare, consistente in una accurata pulizia con aria compressa delle superfici.

La stuccatura di lesioni o vespai e/o l'asportazione di creste di calcestruzzo sarà decisa di volta in volta dalla Direzione Lavori.

Dopo aver posizionato a secco le singole membrane, curandone l'esatta sovrapposizione nei punti di giunzione, le stesse verranno riavvolte per procedere all'impregnazione del sottofondo con appositi adesivi. Le superfici da incollare comprenderanno l'intera superficie da coprire o parte di essa (zone delle sovrapposizioni, sommità del manufatto, punti in cui è possibile l'infiltrazione dell' acqua, ecc.) e la scelta verrà di volta in volta effettuata dalla Direzione dei Lavori.

Steso l'adesivo si srotoleranno le membrane esercitando sulle stesse la pressione necessaria per ottenere il collegamento al supporto.

Le giunzioni verranno sigillate mediante processo di vulcanizzazione da ottenersi con aria calda prodotta con appositi cannelli elettrici.

Le zone così saldate dovranno essere poi pressate con rullino. In alcuni casi (posizioni della giunzione critica nei confronti delle infiltrazioni) la Direzione Lavori potrà richiedere la doppia saldatura.

I risvolti finali delle membrane dovranno essere realizzati in modo da non permettere infiltrazioni di acqua; termineranno quindi o in scanalature da sigillare con mastici elastici, oppure verranno ricoperti con profili metallici non ossidabili da inchiodare al supporto.

Le caratteristiche delle membrane dovranno essere le seguenti:

- peso compreso tra 1 e 1,5 Kg/m²;
- resistenza alla trazione (ASTM D 412) a temperatura ambiente, 70 Kg/m²;
- resistenza agli agenti ossidanti (ozono), 12 ore in atmosfera pari a 50 mg/m² senza formazione di microfessure o altre alterazioni.

Art. 8 - Leganti sintetici

Resine

L'utilizzo di detti materiali, la provenienza, la preparazione, il peso dei singoli componenti e le modalità d'applicazione saranno concordati con la D.L. dietro la sorveglianza e l'autorizzazione degli organi preposti alla tutela del bene in oggetto.

Le caratteristiche dei suddetti prodotti saranno conformi alle norme UNICHIM, mentre le analisi di laboratorio relative alle indagini preliminari per la scelta dei materiali saranno quelle stabilite dalle raccomandazioni NORMAL. In particolare le caratteristiche qualitative dei legami organici in base alloro impiego saranno le seguenti:

 perfetta adesione ai comuni materiali da costruzione ottenuta mediante la formazione di un sufficiente numero di gruppi polari capaci di stabilire legami fisici d'affinità con i costituenti sia minerali che organici dei materiali trattati;

- buona stabilità alla depolimerizzazione ed all'invecchiamento;
- elevata resistenza all'attacco chimico operato da acque, sostanze alcaline o da altri tipi di aggressivi chimici;
- limitatissimo ritiro in fase d'indurimento.

Ove necessario per garantire un ottimale esecuzione dell'incollaggio (es. inghisaggi in fori inclinati verso l'alto e/o in materiale fratturato ecc.) le resine dovranno essere caratterizzate da una tixotropia elevata. Tutte le resine utilizzate dovranno possedere marcatura CE ed essere accompagnate da schede tecniche che ne certifichino le caratteristiche fisico-meccaniche sulla base di prove di laboratorio.

Resine epossidiche

Derivate dalla condensazione del bisfenolo A conepicloridrina, potranno essere del tipo solido o liquido. In combinazione con appositi indurenti amminici che ne caratterizzano il comportamento, potranno essere utilizzate anche miscele con cariche minerali, riempitivi, solventi ed addensanti, solo dietro approvazione del D.L., per lavori in cui sarà necessario sfruttare le loro elevatissime capacità adesive. Saranno vietati tutti i trattamenti superficiali che potrebbero sostanzialmente modificare l'originario effetto cromatico dei manufatti (UNI 7097-72). Le caratteristiche meccaniche, le modalità applicative e gli accorgimenti antinfortunistici sono regolati dalle norme UNICHIM.

I prodotti utilizzati non dovranno presentare nessun ritiro in fase di polimerizzazione.

In genere in presenza di fori lisci (es. fori carotati), per assicurare una corretta adesione, salvo diversa indicazione della D.L. dovranno essere utilizzati opportuni formulati epossidici.

Le caratteristiche richieste in relazione allo specifico utilizzo (+ 20C) sono le seguenti:

T 1	. 1.			•	•			1		
Formulati	enossidic	1 20	11	n1e.7	none	ner	ancoraggi	ed	ınon	1820011
1 Ollinaian	Choppiaic	ıuc		IIIVZ			unicorussi	-cu	111511	IDUA SI.

resistenza a flessione (DIN EN 196-1)	\geq 40 MPa	dopo 45 minuti
resistenza a compressione (DIN EN 196-1)	≥ 100 Mpa	dopo 45 minuti
resistenza a trazione (ISO 527)	≥ 18 MPa	dopo 24 ore
allungamento a rottura (ISO 527)	1.21 %	dopo 24 ore
modulo elastico (ISO 527)	3,60 Gpa	dopo 24 ore
densità	$1,50 g/cm^3$	
Formulati epossidici fluidi per colata:		
densità	$1,40 g/cm^3$	
resistenza a compressione (DIN EN ISO 604)	≥ 90 MPa	
resistenza a flessione (UNI 7219)	≥ 47 MPa	
resistenza a trazione (UNI 5819)	≥ 19 MPa	
modulo elastico a trazione (UNI 5819)	5808 MPa	
adesione Fe/Fe (ASTM D 1002)	≥7 MPa	
adesione al cls (UNI 8298)	≥ 4,9 MPa	
vita utile (gel time) (ASTM C 881)	1 h 30 min	
ritiro lineare (ASTM D2566)	0,0012 cm/cm	

Note:potranno in generale essere utilizzate resine tipo HILTI hit HY 200-A per le riprese dei pilastri e resine superfluide tipo Mapei Epojet per l'iniezione di compensazione sulla trave alveolare.

Resine poliesteri e vinilesteri

Derivate dalla reazione di policondensazione dei glicoli con gli acidi polibasici e le loro anidridi, potranno essere usate sia come semplici polimeri liquidi sia in combinazione con fibre di vetro, di cotone o sintetiche o con calcari, gesso, cementi e sabbie.

Anche per le resine poliesteri valgono le stesse precauzioni, divieti e modalità d'uso enunciati a proposito delle resine epossidiche.

Le loro caratteristiche meccaniche, le modalità d'applicazione e gli accorgimenti antinfortunistici sono regolati dalle norme UNICHIM.

Ancorante chimico in vinilestere:

resistenza a flessione (DIN EN 196-1) dopo 45 minuti ≥ 15 MPa resistenza a compressione (DIN EN 196-1) ≥ 60 MPa dopo 45 minuti resistenza a trazione (ISO 527) ≥ 10 MPa dopo 24 ore allungamento a rottura (ISO 527) 0,47 % dopo 24 ore modulo elastico (ISO 527) 4,3 Gpadopo 24 ore densità $1,70 \text{ g/cm}^3$

Il prodotto dovrà essere atossico (senza stirene)

Resine acriliche

Polimeri di addizione dell'estere acrilico o di suoi derivati. Termoplastiche, resistenti agli acidi, alle basi, agli alcoli in concentrazione sin al 40%, alla benzina, alla trementina. Resine di massima trasparenza, dovranno presentare buona durezza e stabilità dimensionale, buona idrorepellenza e resistenza alle intemperie. A basso peso molecolare presentano bassa viscosità e possono essere lavorate ad iniezione. Potranno essere utilizzate quali consolidanti ed adesivi, eventualmente miscelati con siliconi, con siliconato di potassio ed acqua di calce. Anche come additivi per aumentare l'adesività (stucchi, malte fluide).

Art. 9 - Pavimentazioni

Generalità

In linea generale, salvo diversa disposizione della D.L., la sagoma stradale per tratti in rettifilo sarà costituita da due falde inclinate in senso opposto aventi pendenza trasversale del 2%, raccordate in asse da un arco di cerchio avente tangente di m 0.50.

Alle banchine sarà invece assegnata la pendenza trasversale del 2.5 %.

Le curve saranno convenientemente rialzate sul lato esterno con la pendenza prevista da progetto in accordo con la D.L., in funzione del raggio di curvatura e con gli opportuni tronchi di transizione per il raccordo della sagoma in curva con quella dei rettifili o altre curve precedenti e seguenti.

Il tipo e lo spessore dei vari strati, costituenti la sovrastruttura, saranno quelli stabiliti, per ciascun tratto, dal progetto in accordo con la D.L., in base ai risultati delle indagini geotecniche e di laboratorio eseguite.

I materiali, le terre, impiegati nella realizzazione della sovrastruttura, nonché la loro provenienza dovranno soddisfare le prescrizioni riportate in questa sezione.

La D.L. potrà ordinare ulteriori prove su detti materiali presso Laboratori Ufficiali.

In cantiere dovranno essere attrezzati dei laboratori, con personale qualificato, nei quali eseguire le prove di routine per l'identificazione delle richieste caratteristiche.

L'approvazione della D.L. circa i materiali, le attrezzature, i metodi di lavorazione, non solleverà l'Impresa dalla responsabilità circa la riuscita del lavoro.

L'Impresa dovrà curare di garantire la costanza della massa, nel tempo, delle caratteristiche delle miscele, degli impasti e della sovrastruttura resa in opera.

Salvo che non sia diversamente imposto dai punti seguenti, la superficie finita della pavimentazione non dovrà scostarsi dalla sagoma di progetto più di 1 cm, controllata a mezzo di un regolo lungo 4,50 m disposto secondo due direzioni ortogonali, è ammessa una tolleranza in più o in meno del 3%, rispetto agli spessori di progetto, purchè questa differenza si presenti solo saltuariamente.

- Strati di fondazione

Fondazione stradale in misto granulometricamente stabilizzato

La fondazione è costituita da miscele di terre stabilizzate granulometricamente; la frazione grossa di tali miscele (trattenuto al setaccio 2 UNI) può essere costituita da ghiaie, frantumati, detriti di cava, scorie o anche altro materiale ritenuto idoneo dalla Direzione Lavori.

La fondazione potrà essere formata da materiale idoneo pronto all'impiego oppure da correggersi con adeguata attrezzatura in impianto fisso di miscelazione o in sito.

Lo spessore della fondazione sarà conforme alle indicazioni di progetto e/o dalla Direzione Lavori, e verrà realizzato mediante sovrapposizione di strati successivi.

Fondazione eseguita con materiale proveniente da cava, da scavi o da depositi

Il materiale da impiegare, dopo l'eventuale correzione e miscelazione in impianto fisso, dovrà rispondere alle caratteristiche seguenti:

- a) dimensioni non superiori a 71 mm, né forma appiattita, allungata o lenticolare;
- b) granulometria compresa nel seguente fuso e avente andamento continuo e uniforme praticamente concorde a quello delle curve limiti:

Serie crivelli e setacci	UNI	Passante % totale in peso			
crivello	71	100			
crivello	40	75 - 100			
crivello	25	60 - 87			
crivello	10	35 - 67			
crivello	5	25 - 55			
setaccio	2	15 - 40			
setaccio	0,4	7 - 22			
setaccio	0,075	2 - 10			

- c) rapporto tra il passante al setaccio 0,075 ed il passante al setaccio 0,4 inferiore a 2/3;
- d) perdita in peso alla prova Los Angeles (CNR 34 1973) eseguita sulle singole pezzature inferiore al 30%;
- e) equivalente in sabbia (CNR 27 1972) misurato sulla frazione passante al setaccio n 4 compreso tra 25 e 65 (la prova va eseguita con dispositivo meccanico di scuotimento).

Tale controllo dovrà essere eseguito anche sul materiale prelevato dopo costipamento.

Il limite superiore dell'equivalente in sabbia -65- potrà essere variato dalla Direzione Lavori in funzione delle provenienze e delle caratteristiche del materiale.

Per tutti i materiali aventi equivalente in sabbia compreso fra 25-35, la Direzione Lavori richiederà in ogni caso (anche se la miscela contiene più del 60% in peso di elementi frantumati) la verifica dell'indice di portanza CBR (CNR – UNI 10009) di cui al successivo comma.

f) indice di portanza CBR (CNR – UNI 10009) dopo quattro giorni di imbibizione in acqua (eseguito sul materiale passante al crivello 25) non minore di 50.

È inoltre richiesto che tale condizione sia verificata per un intervallo di \pm 2% rispetto all'umidità ottima di costipamento.

Se le miscele contengono oltre il 60% in peso di elementi frantumati a spigoli vivi, l'accettazione avverrà sulla base delle sole caratteristiche indicate ai precedenti commi a), b), d), e), salvo nel caso citato al comma e) in cui la miscela abbia equivalente in sabbia compreso tra 25 - 35;

g) prova di costipamento delle terre, con energia AASHO modificata (CNR 69 – 1978).

Le caratteristiche suddette dovranno essere accertate a cura dell'Impresa, sotto il controllo della Direzione Lavori, mediante prove di laboratorio sui campioni prelevati in contraddittorio con la Direzione Lavori a tempo opportuno, prima dell'inizio delle lavorazioni.

L'Impresa dovrà indicare per iscritto il tipo di lavorazione che intende adottare ed il tipo e la consistenza dell'attrezzatura di cantiere che verrà impiegata.

I requisiti di accettazione verranno accertati dalla Direzione Lavori con controlli sia preliminari che in corso d'opera.

In quest'ultimo caso verrà prelevato il materiale in sito già miscelato, prima e dopo il costipamento.

Per il materiale proveniente da cave l'impresa dovrà indicare le fonti di approvvigionamento e la Direzione Lavori si riserva di accertarne i requisiti di accettazione mediante controlli sia in cava che in corso d'opera con le modalità sopra specificate.

Il materiale, qualora la Direzione Lavori ne accerti la non rispondenza anche ad una sola delle caratteristiche richieste, non potrà essere impiegato nella lavorazione e se la stessa Direzione Lavori riterrà, a suo insindacabile giudizio, che non possa essere reso idoneo mediante opportuni interventi correttivi da effettuare a cura e spese dell'Impresa, dovrà essere allontanato dal cantiere.

Modalità esecutive

Il piano di posa dello strato dovrà avere le quote, la sagoma ed i requisiti di compattezza previsti in progetto ed essere ripulito da materiale estraneo.

Il materiale verrà steso in strati di spessore finito non superiore a 20 cm e non inferiore a 10 cm e dovrà presentarsi, dopo il costipamento, uniformemente miscelato in modo da non presentare segregazione dei suoi componenti.

L'eventuale aggiunta di acqua, per raggiungere l'umidità prescritta in funzione della densità, è da effettuarsi mediante dispositivo spruzzatori.

A questo proposito si precisa che tutte le operazioni anzidette non devono essere eseguite quando le condizioni ambientali (pioggia, neve, gelo) siano tali da danneggiare la qualità dello strato stabilizzato.

Verificandosi comunque eccesso di umidità, o danni dovuti al gelo, lo strato compromesso dovrà essere rimosso e ricostituito a cura e spese dell'Impresa.

Il materiale pronto per il costipamento dovrà presentare in ogni punto la prescritta granulometria.

Per il costipamento e la rifinitura verranno impiegati rulli vibranti o vibranti gommati, tutti semoventi.

L'idoneità dei rulli e le modalità di costipamento per ogni cantiere, verranno accertate dalla Direzione Lavori con una prova sperimentale, usando le miscele messe a punto per quel cantiere.

Il costipamento di ogni strato dovrà essere eseguito sino ad ottenere una densità in sito non inferiore al 95% della densità massima fornita dalla prova AASHTO modificata (CNR 69 – 1978) con esclusione della sostituzione degli elementi trattenuti al crivello 25 (AASHTO T 180-57 metodo D).

Se la misura in sito riguarda materiale contenente fino al 25% in peso di elementi di dimensioni maggiori di mm 25, la densità ottenuta verrà corretta in base alla formula:

$$dr = \frac{di \cdot Pc \cdot (100 - x)}{100 \cdot Pc - x \cdot di}$$

dr = densità della miscela ridotta degli elementi di dimensione superiore a 25 mm, da paragonare a quello AASHTO modificata determinata in laboratorio;

di = densità della miscela intera;

Pc = Peso specifico degli elementi di dimensione maggiore di 25 mm;

x = percentuale in peso degli elementi di dimensione maggiore di 25 mm.

La suddetta formula di trasformazione potrà essere applicata anche nel caso di miscele contenenti una percentuale in peso di elementi di dimensione superiore a mm 35, compresa tra il 25% e il 40%.

In tal caso nella stessa formula, al termine x dovrà essere sempre dato il valore 25 (indipendentemente dalla effettiva percentuale in peso trattenuto al crivello UNI 25 mm).

<u>Il valore del modulo di deformazione (CNR 146 – 1992) nell'intervallo compreso fra 0,25 - 0,35 MPa non dovrà essere inferiore a 80 MPa.</u>

In caso contrario l'impresa, a sua cura e spese, dovrà adottare tutti i provvedimenti atti al raggiungimento del valore prescritto, non esclusa la rimozione ed il rifacimento dello strato.

La superficie finita non dovrà scostarsi dalla sagoma di progetto di oltre 1 cm, controllato a mezzo di un regolo di 4,00 m di lunghezza e disposto secondo due direzioni ortogonali. Lo spessore dovrà essere quello prescritto, con una tolleranza in più o in meno del 5% purché questa differenza si presenti solo saltuariamente. In caso contrario l'Impresa a sua cura e spese, dovrà provvedere al raggiungimento dello spessore prescritto.

Fondazione in misto cementato confezionato in centrale

Il misto cementato per fondazione o per base sarà costituito da una miscela di aggregati lapidi, impastata con cemento ed acqua in impianto centralizzato con dosatori a peso o a volume, da stendersi in unico strato dello spessore indicate in progetto e comunque non dovrà mai avere uno spessore finito superiore ai 20 cm o inferiore ai 10 cm.

Caratteristiche dei materiali da impiegare

Saranno impiegate ghiaie e sabbie di cava e/o di fiume con percentuale di frantumato complessiva compresa tra il 30% ed il 60% in peso sul totale degli aggregati.

La Direzione Lavori potrà autorizzare l'impiego di quantità di materiale frantumato superiore al limite stabilito, in questo caso la miscela finale dovrà essere tale da presentare le stesse resistenze a compressione e a trazione a sette giorni prescritte nel seguito; questo risultato potrà ottenersi aumentando la percentuale delle sabbie presenti nella miscela e/o la quantità di passante al setaccio 0,75 mm.

Gli inerti dovranno avere i seguenti requisiti:

- a) dimensioni non superiori a 40 mm, né di forma appiattita, allungata o lenticolare;
- b) granulometria compresa nel seguente fuso ed avente andamento continuo ed uniforme (CNR 23 1971):

Passante	Serie
totale in peso	crivelli e setacci UNI
100	crivello 40
80 - 100	crivello 30
72 - 90	crivello 25
53 - 70	crivello 15

crivello 10	40 - 55
crivello 5	28 - 40
setaccio 2	18 - 30
setaccio 0,4	8 - 18
setaccio 0,18	6 - 14
setaccio 0,075	5 - 10

- c) perdita in peso alla prova Los Angeles (CNR 34 1973) non superiore al 30% in peso;
- d) equivalente in sabbia (CNR 27 1972) compreso fra 30 60;

indice di plasticità (CNR UNI 10014) non determinabile (materiale non plastico).

Legante

Dovrà essere impiegato cemento normale (Portland, pozzolanico o d'alto forno).

A titolo indicativo la percentuale di cemento sarà compresa tra il 2, 5% ed il 3,5% sul peso degli aggregati asciutti.

E' possibile sostituire parzialmente il cemento con cenere di carbone del tipo leggero di recente produzione: orientativamente le ceneri leggere possono sostituire fino al 40% del peso indicato di cemento.

La quantità in peso di ceneri da aggiungere per ottenere pari caratteristiche meccaniche scaturirà da apposite prove di laboratorio da effettuare a cura dell'Impresa e sotto il controllo della Direzione Lavori.

Indicativamente ogni punto percentuale di cemento potrà essere sostituito da 4-5 punti percentuali di ceneri.

Acqua

Dovrà essere esente da impurità dannose, oli, acidi, alcali, materia organica e qualsiasi altra sostanza nociva.

La quantità di acqua nella miscela sarà quella corrispondente all'umidità ottima di costipamento (CNR 69 – 1978) con una variazione compresa entro $\pm 2\%$ del peso della miscela per consentire il raggiungimento delle resistenze indicate di seguito.

Studio della miscela in laboratorio

L'Impresa dovrà sottoporre all'accettazione della Direzione Lavori la composizione granulometrica da adottare e le caratteristiche della miscela.

La percentuale di cemento e delle eventuali ceneri volanti, come la percentuale di acqua, dovranno essere stabilite in relazione alle prove di resistenza eseguite sui provini cilindrici confezionati entro stampi CBR (CNR-UNI 10009) impiegati senza disco spaziatore (altezza 17,78 cm, diametro 15,24 cm, volume 3242 cm³); per il confezionamento dei provini gli stampi verranno muniti di collare di prolunga allo scopo di consentire il regolare costipamento dell'ultimo strato con la consueta eccedenza di circa 1 cm rispetto all'altezza dello stampo vero e proprio.

Tale eccedenza dovrà essere eliminata, previa rimozione del collare suddetto e rasatura dello stampo, affinché l'altezza del provino risulti definitivamente di 17, 78 cm.

La miscela di studio verrà preparata partendo da tutte le classi previste per gli aggregati, mescolandole tra loro, con il cemento, l'eventuale cenere e l'acqua nei quantitativi necessari ad ogni singolo provino.

Comunque prima di immettere la miscela negli stampi si opererà una vagliatura sul crivello UNI 25 mm allontanando gli elementi trattenuti (di dimensione superiore a quella citata) con la sola pasta di cemento ad essi aderente.

La miscela verrà costipata su 5 strati, con il pestello e l'altezza di caduta di cui alla norma AASHTO modificato, con 85 colpi per strato, in modo da ottenere una energia di costipamento pari a quella della prova citata (diametro pestello 51+0,5 mm, peso pestello 4,535+0,005 Kg, altezza di caduta 45,7 cm).

I provini dovranno essere estratti dallo stampo dopo 24 h e portati successivamente a stagionatura per altri 6 giorni in ambiente umido (umidità relativa non inferiore al 90% e temperatura di circa 293 K); in caso di confezione in cantiere la stagionatura si farà in sabbia mantenuta umida.

Operando ripetutamente nel modo suddetto, con l'impiego di percentuali in peso d'acqua diverse (sempre riferite alla miscela intera, compreso quanto eliminato per vagliatura sul crivello 25) potranno essere determinati i valori necessari al tracciamento dei diagrammi di studio.

Lo stesso dicasi per le variazioni della percentuale di legante.

I provini dovranno avere resistenza a compressione a 7 giorni non minore di 2,5 MPa e non superiore a 4,5 MPa, ed a trazione secondo la prova "brasiliana" (CNR 97 – 1984), non inferiore a 0,25 MPa.

Per particolari casi è facoltà della Direzione Lavori accettare valori di resistenza a compressione fino a 7,5 MPa (questi valori per la compressione e la trazione devono essere ottenuti dalla media di 3 provini, se ciascuno dei singoli valori non si scosta dalla media stessa di $\pm 15\%$, altrimenti dalla media dei due restanti dopo aver scartato il valore anomalo).

Da questi dati di laboratorio dovranno essere scelti la curva, la densità e le resistenze da confrontare con quelle di progetto e da usare come riferimento nelle prove di controllo.

Modalità esecutive - Confezione dellemiscele

Le miscele dovranno essere confezionate in impianti fissi automatizzati, di idonee caratteristiche, mantenuti sempre perfettamente funzionanti in ogni loro parte.

Gli impianti dovranno comunque garantire uniformità di produzione ed essere in grado di realizzare miscele del tutto rispondenti a quelle di progetto.

La dosatura degli aggregati dovrà essere effettuata sulla base di almeno 4 classi con predosatori in numero corrispondente alle classi impiegate.

La zona destinata all'ammannimento degli aggregati sarà preventivamente e convenientemente sistemata per annullare la presenza di sostanze argillose e ristagni di acqua che possano compromettere la pulizia degli aggregati.

Inoltre i cumuli delle diverse classi dovranno essere nettamente separati tra di loro e l'operazione di rifornimento nei predosatori eseguita con la massima cura.

Posa in opera

La miscela dovrà essere stesa sul piano finito dello strato precedente dopo che sia stata accertata dalla Direzione Lavori la rispondenza di quest'ultimo ai requisiti di quota, sagoma e compattezza prescritti.

La stesa verrà eseguita impiegando finitrici vibranti.

Le operazioni di addensamento dello strato dovranno essere realizzate nell'ordine con le seguenti attrezzature:

- rullo a due ruote vibranti da 10 t per ruota o rullo con una sola ruota vibrante di peso non inferiore a 18 t;
- rullo gommato con pressione di gonfiaggio superiore a 5 bar e carico di almeno 18 t.

Potranno essere impiegati in alternativa, previo benestare della Direzione Lavori, rulli misti vibranti-gommati rispondenti alle caratteristiche di cui sopra.

In ogni caso l'idoneità dei rulli e le modalità di costipamento dovranno essere verificate preliminarmente dalla Direzione Lavori su una stesa sperimentale delle miscele messe a punto.

La stesa della miscela non dovrà di norma essere eseguita con temperature ambiente inferiori a 273 K e superiori a 298 K e mai sotto la pioggia.

Tuttavia, a insindacabile giudizio della Direzione Lavori, potrà essere consentita la stesa a temperature tra i 298 e i 303 K.

In questo caso però sarà necessario proteggere da evaporazione la miscela durante il trasporto dall'impianto di confezionamento al luogo di impiego (ad esempio con teloni), sarà inoltre necessario provvedere ad un abbondante bagnatura del piano di posa del misto cementato.

Infine le operazioni di costipamento e di stesa del velo di protezione con emulsione bituminosa dovranno essere eseguite immediatamente dopo la stesa della miscela.

Le condizioni ideali di lavoro si hanno con temperature comprese tra 288 e 291 K ed umidità relativa del 50% circa; temperature superiori saranno ancora accettabili con umidità relativa anch'essa crescente; comunque è opportuno, anche per temperature inferiori alla media, che l'umidità relativa dell'ambiente non scenda al di sotto del 15% in quanto ciò potrebbe provocare ugualmente una eccessiva evaporazione della miscela.

Il tempo intercorrente tra la stesa di due strisce affiancate non dovrà superare di norma le 2 h per garantire la continuità della struttura. Particolari accorgimenti dovranno adottarsi nella formazione dei giunti longitudinali, che andranno protetti con fogli di polietilene o materiale similare.

Il giunto di ripresa sarà ottenuto terminando la stesa dello strato a ridosso di una tavola e togliendo la tavola stessa al momento della ripresa della stesa; se non si fa uso della tavola, sarà necessario, prima della ripresa della stesa, provvedere a tagliare l'ultima parte dello strato precedente, in modo da ottenere una parete verticale.

Non dovranno essere eseguiti altri giunti all'infuori di quelli di ripresa.

Il transito di cantiere potrà essere ammesso sullo strato a partire dal terzo giorno dopo quello in cui è stata effettuata la stesa e limitatamente ai mezzi gommati.

Strati eventualmente compromessi dalle condizioni meteorologiche o da altre cause dovranno essere rimossi e sostituiti a totale cura e spese dell'Impresa.

Protezione superficiale

Appena completati il costipamento e la rifinitura superficiale dello strato, dovrà essere eseguita la spruzzatura di un velo protettivo di emulsione bituminosa acida al 55%, in ragione di 1,0-2,0 kg/m², in relazione al tempo ed alla intensità del traffico di cantiere cui potrà essere sottoposta la fondazione, con successivo spargimento di sabbia.

Requisiti di accettazione

Le caratteristiche granulometriche delle miscele, potranno avere una tolleranza di \pm 5 punti % fino al passante al crivello n°5 e di \pm 2 punti % per il passante al setaccio 2 ed inferiori, purché non vengano superati i limiti del fuso.

Qualora le tolleranze di cui sopra vengano superate, la lavorazione dovrà essere sospesa e l'Impresa dovrà adottare a sua cura e spese quei provvedimenti che, proposti dalla stessa, per diventare operativi dovranno essere approvati dalla Direzione Lavori.

La densità in sito, a compattazione ultimata, dovrà risultare non inferiore al 97% delle prove AASHTO modificato (CNR 69 – 1978), nel 98% delle misure effettuate.

La densità in sito sarà determinata mediante normali procedimenti a volumometro, con l'accorgimento di eliminare dal calcolo, sia del peso che del volume, gli elementi di dimensione superiore a 25 mm, ciò potrà essere ottenuto con l'applicazione della formula di trasformazione di cui punto 1.1.1.2 della presente sezione, oppure con una misura diretta consistente nella separazione mediante vagliatura degli elementi di pezzatura maggiore di 25 mm e nella loro sistemazione nel cavo di prelievo prima di effettuare la misura con volumometro.

La sistemazione di questi elementi nel cavo dovrà essere effettuata con cura, elemento per elemento per evitare la formazione di cavità durante la misurazione del volume del cavo stesso.

Il valore del modulo di deformazione (CNR- 146 – 1992), al primo ciclo di carico e nell'intervallo compreso tra 0,15-0,25 MPa, in un tempo compreso fra 3-12 h dalla compattazione, non dovrà mai essere inferiore a 150 MPa.

Qualora venissero rilevati valori inferiori, la frequenza dei rilevamenti dovrà essere incrementata secondo le indicazioni della Direzione Lavori e l'impresa, a sua cura e spese, dovrà demolire e ricostruire gli strati interessati.

La superficie finita della fondazione non dovrà scostarsi dalla sagoma di progetto di oltre 1 cm verificato a mezzo di un regolo di 4,00 m di lunghezza e disposto secondo due direzioni ortogonali.

La frequenza del controllo sarà quella ordinata dalla Direzione Lavori.

- Strato di base

Generalità

Lo strato di base è costituito da un misto granulare di frantumato, ghiaia, sabbia ed eventuale additivo (secondo le definizioni riportate nell'art. 1 delle Norme C.N.R. sui materiali stradali - fascicolo n. 4/1953 - ("Norme per l'accettazione dei pietrischi, dei pietrischetti, delle graniglie, delle sabbie e degli additivi per costruzioni stradali"), impastato con bitume a caldo, previo preriscaldamento degli aggregati, steso in opera mediante macchina vibrofinitrice e costipato con rulli gommati, vibranti gommati e metallici.

Lo spessore della base è prescritto nei tipi di progetto, salvo diverse indicazioni della Direzione dei Lavori.

Inerti

I requisiti di accettazione degli inerti impiegati nei conglomerati bituminosi per lo strato di base dovranno essere conformi alle prescrizioni contenute nel fascicolo n. 4 delle norme C.N.R. - 1953 ("Norme per l'accettazione dei pietrischi, dei pietrischetti, delle graniglie, delle sabbie e degli additivi per costruzioni stradali") e nelle norme C.N.R. 65-1978 C.N.R. 80-1980.

Per il prelevamento dei campioni destinati alle prove di controllo dei requisiti di accettazione così come per le modalità di esecuzione delle prove stesse, valgono le prescrizioni contenute nel fascicolo n. 4 delle norme C.N.R. - 1953 - ("Norme per l'accettazione dei pietrischi, dei pietrischetti, delle graniglie, delle sabbie e degli additivi per costruzioni stradali"), con l'avvertenza che la prova per la determinazione della perdita in peso sarà fatta col metodo Los Angeles secondo le norme del C.N.R B.U. n. 34 (del 28-3-1973), anziché col metodo DEVAL.

L'aggregato grosso sarà costituito da frantumati (nella misura che di volta in volta sarà stabilita a giudizio della Direzione Lavori e che comunque non potrà essere inferiore al 30% della miscela degli inerti) e da ghiaie che dovranno rispondere al seguente requisito:

- perdita di peso alla prova Los Angeles eseguita sulle singole pezzature inferiore al 25%.

In ogni caso gli elementi dell'aggregato dovranno essere costituiti da elementi sani, duri, durevoli, a superficie ruvida, puliti ed esenti da polvere e da materiali estranei, inoltre non dovranno mai avere forma appiattita, allungata o lenticolare.

L'aggregato fino sarà costituito in ogni caso da sabbie naturali e di frantumazione (la percentuale di queste ultime sarà prescritta di volta in volta dalla Direzione Lavori in relazione ai valori di scorrimento delle prove Marshall, ma comunque non dovrà essere inferiore al 30% della miscela delle sabbie) che dovranno rispondere al seguente requisito:

- equivalente in sabbia (C.N.R. 27 -1972) superiore a 50.

Gli eventuali additivi, provenienti dalla macinazione di rocce preferibilmente calcaree o costituiti da cemento, calce idrata, calce idraulica, polveri d'asfalto, dovranno soddisfare ai seguenti requisiti:

- setaccio UNI 0,18 (ASTM n. 80): passante in peso: 100%;
- setaccio UNI 0,075 (ASTM n. 200): passante in peso: 90%.

La granulometria dovrà essere eseguita per via umida.

Legante

Dovranno essere impiegati bitumi semisolidi per uso stradale di normale produzione con le caratteristiche indicate nella tabella seguente, impiegati per il confezionamento di conglomerati bituminosi.

Detti leganti sono denominati "A" e "B".

La tabella che segue si riferisce al prodotto di base così com'è prelevato nelle cisterne e/o negli stoccaggi.

Per tutte le lavorazioni andrà sempre impiegato il bitume di tipo "A", salvo casi particolari in cui potrà essere impiegato il bitume "B" (è ammissibile nelle Regioni più fredde, nord o zone in quota) sempre su preventiva autorizzazione della D.L..

TABELLA "BITUMI DI BASE"	BITU	ME "A" BITUME	"B"
CARATTERISTICHE:	UNITÀ	VALORE	VALORE
Penetrazione a 25°C/298°K, 100g, 5s	0,1 mm	65 85	85 105
Punto di rammollimento	C / K	48-54/321-327	47-52/320-325
Indice di penetrazione		-1 / +1	-1 / +1
Punto di rottura (Fraass), min.	C / K	-8 / 265	-9 / 264
Duttilità a 25°C/298°K, min.	cm	90	100
Solubilità in solventi organici, min.	%	99	99
Perdita per riscaldamento (volatilià) T = 163°C	1%	+/- 0,5	+/- 1
436°K, max.			
Contenuto di paraffina, max.	%	3	3
Viscosità dinamica a $T = 60^{\circ}C / 333^{\circ}K$, gradiente di	Pa.s	220 - 400	150 - 250
velocità = 1 s^{-1}			
Viscosità dinamica a T = 160°C / 433°K, gradiente di	Pa.s	0.4 - 0.8	0.2 - 0.6
velocità = 1 s ⁻¹			
Valori dopo RTFOT (Rolling Thin Film Overt Test)			
Viscosità dinamica a T = 60°C / 333°K, gradiente di	Pa.s	700 - 800	500 - 700
velocità = 1 s ⁻¹			
Penetrazione residua a 25°C/298°K, 100g, 5s	%	≤ 70	≤ 75
Variazione del Punto di rammollimento	C / K	≤+8/≤281	≤ + 10 / ≤ 283

L' indice di penetrazione, dovrà calcolato con la formula appresso riportata, compreso fra - 1,0 e + 1,0:

```
indice di penetrazione = 20 u - 500 v / u + 50 v
```

dove:

```
u = temperatura di rammollimento alla prova "palla-anello" in ^{\circ}C (a 25^{\circ}C); v = log. 800 - log. penetrazione bitume in dmm (a 25^{\circ}C.).
```

Miscela

La miscela degli aggregati da adottarsi dovrà avere una composizione granulometrica contenuta nel seguente fuso:

Serie crivelli e setacci U.N.I. Passante: % totale in peso

Crivello	40	100
Crivello	30	80 ÷ 100
Crivello	25	70 ÷ 95
Crivello	15	45 ÷ 70
Crivello	10	35 ÷ 60
Crivello	5	25 + 50
Setaccio	2	20 + 40
Setaccio	0,4	6 ÷ 20
Setaccio	0,18	4 + 14
Setaccio	0,075	4 + 8

Il tenore di bitume dovrà essere compreso tra il 4 % e il 5% riferito al peso totale degli aggregati (C.N.R. 38 - 1973);

Il conglomerato dovrà avere i seguenti requisiti:

- il valore della stabilità Marshall (C.N.R. 30 -1973) eseguita a 60°C su provini costipati con 75 colpi di maglio per faccia, dovrà risultare non inferiore a 700 kg; inoltre il valore della rigidezza Marshall, cioè il rapporto tra la stabilità misurata in kg e lo scorrimento misurato in mm, dovrà essere superiore a 250;
- gli stessi provini per i quali viene determinata la stabilità Marshall dovranno presentare una percentuale di vuoti residui compresi fra 4% e 7%. I provini per le misure di stabilità e rigidezza anzidette dovranno essere confezionati presso l'impianto di produzione e/o presso la stesa. La temperatura di compattazione dovrà essere uguale o superiore a quella di stesa; non dovrà però superare quest'ultima di oltre 10°C.
- Le miscele di aggregati e leganti idrocarburici dovranno rispondere inoltre anche alle norme C.N.R. 134 -1991;

Formazione e confezione delle miscele

Il conglomerato sarà confezionato mediante impianti fissi autorizzati, di idonee caratteristiche, mantenuti sempre perfettamente funzionanti in ogni loro parte.

La produzione di ciascun impianto non dovrà essere spinta oltre la sua potenzialità per garantire il perfetto essiccamento, l'uniforme riscaldamento della miscela ed una perfetta vagliatura che assicuri una idonea riclassificazione delle singole classi degli aggregati; resta pertanto escluso l'uso dell'impianto a scarico diretto.

L'impianto dovrà comunque garantire uniformità di produzione ed essere in grado di realizzare miscele del tutto rispondenti a quelle di progetto.

Il dosaggio dei componenti della miscela dovrà essere eseguito a peso mediante idonea apparecchiatura la cui efficienza dovrà essere costantemente controllata.

Ogni impianto dovrà assicurare il riscaldamento del bitume alla temperatura richiesta ed a viscosità uniforme fino al momento della miscelazione nonché il perfetto dosaggio sia del bitume che dell'additivo.

La zona destinata all'ammannimento degli inerti sarà preventivamente e convenientemente sistemata per annullare la presenza di sostanze argillose e ristagni di acqua che possano compromettere la pulizia degli aggregati.

Inoltre i cumuli delle diverse classi dovranno essere nettamente separati tra di loro e l'operazione di rifornimento nei predosatori eseguita con la massima cura.

Si farà uso di almeno 4 classi di aggregati con predosatori in numero corrispondente alle classi impiegate.

Il tempo di mescolazione effettivo sarà stabilito in funzione delle caratteristiche dell'impianto e dell'effettiva temperatura raggiunta dai componenti la miscela, in misura tale da permettere un completo ed uniforme rivestimento degli inerti con il legante; comunque esso non dovrà mai scendere al di sotto dei 20 secondi.

La temperatura degli aggregati all'atto della mescolazione dovrà essere compresa tra 150°C e 170°C, e quella del legante tra 150°C e 180°C, salvo diverse disposizioni della Direzione Lavori in rapporto al tipo di bitume impiegato.

Per la verifica delle suddette temperature, gli essiccatori, le caldaie e le tramogge degli impianti dovranno essere muniti di termometri fissi perfettamente funzionanti e periodicamente tarati.

L'umidità degli aggregati all'uscita dell'essiccatore non dovrà di norma superare lo 0,5%.

Posa in opera delle miscele

La miscela bituminosa verrà stesa sul piano finito della fondazione dopo che sia stata accertata dalla Direzione Lavori la rispondenza di quest'ultima ai requisiti di quota, sagoma, densità e portanza indicati nei precedenti articoli relativi alle fondazioni stradali in misto granulare ed in misto cementato.

Prima della stesa del conglomerato su strati di fondazione in misto cementato, per garantire l'ancoraggio, si dovrà provvedere alla rimozione della sabbia eventualmente non trattenuta dall'emulsione bituminosa stesa precedentemente a protezione del misto cementato stesso.

Procedendo alla stesa in doppio strato, i due strati dovranno essere sovrapposti nel più breve tempo possibile; tra di essi dovrà essere interposta una mano di attacco di emulsione bituminosa in ragione di 0,5 Kg/m².

La posa in opera dei conglomerati bituminosi verrà effettuata a mezzo di macchine vibrofinitrici dei tipi approvati dalla Direzione Lavori, in perfetto stato di efficienza e dotate di automatismo di autolivellamento.

Le vibrofinitrici dovranno comunque lasciare uno strato finito perfettamente sagomato, privo di sgranamenti, fessurazioni ed esente da difetti dovuti a segregazioni degli elementi litoidi più grossi.

Nella stesa si dovrà porre la massima cura alla formazione dei giunti longitudinali preferibilmente ottenuti mediante tempestivo affiancamento di una strisciata alla precedente con l'impiego di 2 o più finitrici.

Qualora ciò non sia possibile, il bordo della striscia già realizzata dovrà essere spalmato con emulsione bituminosa per assicurare la saldatura della striscia successiva.

Se il bordo risulterà danneggiato o arrotondato si dovrà procedere al taglio verticale con idonea attrezzatura.

I giunti trasversali, derivanti dalle interruzioni giornaliere, dovranno essere realizzati sempre previo taglio ed asportazione della parte terminale di azzeramento.

La sovrapposizione dei giunti longitudinali tra i vari strati sarà programmata e realizzata in maniera che essi risultino fra di loro sfalsati di almeno cm 20 e non cadano mai in corrispondenza delle 2 fasce della corsia di marcia normalmente interessata dalle ruote dei veicoli pesanti.

Il trasporto del conglomerato dall'impianto di confezione al cantiere di stesa, dovrà avvenire mediante mezzi di trasporto di adeguata portata, efficienti e veloci e comunque sempre dotati di telone di copertura per evitare i raffreddamenti superficiali eccessivi e formazione di crostoni.

La temperatura del conglomerato bituminoso all'atto della stesa, controllata immediatamente dietro la finitrice, dovrà risultare in ogni momento non inferiore a 130°C.

La stesa dei conglomerati dovrà essere sospesa quando le condizioni meteorologiche generali possano pregiudicare la perfetta riuscita del lavoro; gli strati eventualmente compromessi (con densità inferiori a quelle richieste) dovranno essere immediatamente rimossi e successivamente ricostruiti a cura e spese dell'Impresa.

La compattazione dei conglomerati dovrà iniziare appena stesi dalla vibrofinitrice e condotta a termine senza soluzione di continuità.

La compattazione sarà realizzata a mezzo di rulli gommati o vibrati gommati con l'ausilio di rulli a ruote metalliche, tutti in numero adeguato ed aventi idoneo peso e caratteristiche tecnologiche avanzate in modo da assicurare il raggiungimento delle massime densità ottenibili.

Al termine della compattazione, lo strato di base dovrà avere una densità uniforme in tutto lo spessore non inferiore al 97% di quella Marshall dello stesso giorno, rilevata all'impianto o alla stesa. Tale valutazione sarà eseguita sulla produzione giornaliera, su carote di 15 cm di diametro; il valore risulterà dalla media di due prove (C.N.R. 40-1973).

Si avrà cura inoltre che la compattazione sia condotta con la metodologia più adeguata per ottenere uniforme addensamento in ogni punto ed evitare fessurazioni e scorrimenti nello strato appena steso.

La superficie degli strati dovrà presentarsi priva di irregolarità ed ondulazioni. Un'asta rettilinea lunga m 4,00, posta in qualunque direzione sulla superficie finita di ciascuno strato dovrà aderirvi uniformemente.

Saranno tollerati scostamenti contenuti nel limite di 10 mm.

Il tutto nel rispetto degli spessori e delle sagome di progetto.

- Strati di collegamento (binder) e di usura

Generalità

La parte superiore della sovrastruttura stradale sarà, in generale, costituita da un doppio strato di conglomerato bituminoso steso a caldo, e precisamente: da uno strato inferiore di collegamento (binder) e da uno strato superiore di usura, secondo quanto stabilito dalla Direzione Lavori.

Il conglomerato per ambedue gli strati sarà costituito da una miscela di pietrischetti, graniglie, sabbie ed additivi, secondo le definizioni riportate nell' Art. 1 delle norme C.N.R., fascicolo n. 4/1953 - ("Norme per l'accettazione dei pietrischi, dei pietrischetti, delle graniglie, delle sabbie e degli additivi per costruzioni stradali"), mescolati con bitume a caldo, e verrà steso in opera mediante macchina vibrofinitrice e compattato con rulli gommati e lisci.

Inerti

Il prelievo dei campioni di materiali inerti, per il controllo dei requisiti di accettazione appresso indicati, verrà effettuato secondo le norme C.N.R., Capitolo II del fascicolo 4/1953 - ("Norme per l'accettazione dei pietrischi, dei pietrischetti, delle graniglie, delle sabbie e degli additivi per costruzioni stradali").

Per il prelevamento dei campioni destinati alle prove di controllo dei requisiti di accettazione, così come per le modalità di esecuzione delle prove stesse, valgono le prescrizioni contenute nel fascicolo n. 4 delle Norme C.N.R. 1953 - ("Norme per l'accettazione dei pietrischi, dei pietrischetti, delle graniglie, delle sabbie e degli additivi per costruzioni stradali"), con l'avvertenza che la prova per la determinazione della perdita in peso sarà fatta col metodo Los Angeles secondo le Norme C.N.R. B.U n. 34 (del 28-3-1973) anziché col metodo DEVAL.

L'aggregato grosso (pietrischetti e graniglie) dovrà essere ottenuto per frantumazione ed essere costituito da elementi sani, duri, durevoli, approssimativamente poliedrici, con spigoli vivi, a superficie ruvida, puliti ed esenti da polvere o da materiali estranei.

L'aggregato grosso sarà costituito da pietrischetti e graniglie che potranno anche essere di provenienza o natura petrografica diversa, purché alle prove appresso elencate, eseguite su campioni rispondenti alla miscela che si intende formare, risponda ai seguenti requisiti.

- Per strati di collegamento (BINDER):

- perdita in peso alla prova Los Angeles eseguita sulle singole pezzature secondo le norme ASTM C 131 AASHO T 96, inferiore al 25% (C.N.R. 34-1973);
- indice dei vuoti delle singole pezzature, secondo C.N.R., fascicolo 4/1953 ("Norme per l'accettazione dei pietrischi, dei pietrischetti, delle graniglie, delle sabbie e degli additivi per costruzioni stradali"), inferiore a 0,80;
- coefficiente di imbibizione, secondo C.N.R., fascicolo 4/1953 ("Norme per l'accettazione dei pietrischi, dei pietrischetti, delle graniglie, delle sabbie e degli additivi per costruzioni stradali") inferiore a 0,015 (C.N.R. 137-1992);
- materiale non idrofilo, secondo C.N.R., fascicolo 4/1953 ("Norme per l'accettazione dei pietrischi, dei pietrischetti, delle graniglie, delle sabbie e degli additivi per costruzioni stradali").

Nel caso che si preveda di assoggettare al traffico lo strato di collegamento in periodi umidi od invernali, la perdita in peso per scuotimento sarà limitata allo 0,5%.

- Per strati di usura:

- perdita in peso alla prova Los Angeles eseguita sulle singole pezzature secondo le norme ASTM C 131 AASHO T 96, inferiore od uguale al 20% (C.N.R. 34 -1973);
- almeno un 30% in peso del materiale dell'intera miscela deve provenire da frantumazione di rocce che presentino un coefficiente di frantumazione minore di 100 e resistenza a compressione, secondo tutte le giaciture, non inferiore a 140 N/mm², nonché resistenza alla usura minima 0,6;
- indice dei vuoti delle singole pezzature, secondo C.N.R., fascicolo n. 4/1953 ("Norme per l'accettazione dei pietrischi, dei pietrischetti, delle graniglie, delle sabbie e degli additivi per costruzioni stradali"), inferiore a 0,85;

- coefficiente di imbibizione, secondo C.N.R., fascicolo 4/1953 ("Norme per l'accettazione dei pietrischi, dei pietrischetti, delle graniglie, delle sabbie e degli additivi per costruzioni stradali"), inferiore a 0,015 (C.N.R 137-1992);
- materiale non idrofilo, secondo C.N.R., fascicolo 4/1953 ("Norme per l'accettazione dei pietrischi, dei pietrischetti, delle graniglie, delle sabbie e degli additivi per costruzioni stradali"), con limitazione per la perdita in peso allo 0,5%;

Per le banchine di sosta saranno impiegati gli inerti prescritti per gli strati di collegamento e di usura di cui sopra.

In ogni caso i pietrischi e le graniglie dovranno essere costituiti da elementi sani, duri, durevoli, approssimativamente poliedrici, con spigoli vivi, a superficie ruvida, puliti ed esenti da polvere e da materiali estranei

L'aggregato fino sarà costituito in ogni caso da sabbie naturali o di frantumazione che dovranno soddisfare ai requisiti dell' Art. 5 delle norme C.N.R. fascicolo n. 4 del 1953, ed in particolare:

- equivalente in sabbia, determinato con la prova AASHO T 176, (e secondo la norma C.N.R. B.U. n. 27 del 30-3-1972) non inferiore al 55%;
- materiale non idrofilo, secondo C.N.R., fascicolo 4/1953 ("Norme per l'accettazione dei pietrischi, dei pietrischetti, delle graniglie, delle sabbie e degli additivi per costruzioni stradali") con le limitazioni indicate per l'aggregato grosso. Nel caso non fosse possibile reperire il materiale della pezzatura 2 ÷ 5 mm necessario per la prova, la stessa dovrà essere eseguita secondo le modalità della prova Riedel-Weber con concentrazione non inferiore a 6.

Gli additivi minerali (fillers) saranno costituiti da polvere di rocce preferibilmente calcaree o da cemento, calce idrata, calce idraulica, polveri di asfalto e dovranno risultare alla setacciatura per via secca interamente passanti al setaccio n. 30 ASTM e per almeno il 65% al setaccio n. 200 ASTM.

Per lo strato di usura, a richiesta della Direzione dei Lavori, il filler potrà essere costituito da polvere di roccia asfaltica contenente il $6 \div 8\%$ di bitume ad alta percentuale di asfalteni con penetrazione Dow a 25° C inferiore a 150 dmm.

Per fillers diversi da quelli sopra indicati è richiesta la preventiva approvazione della Direzione dei Lavori in base a prove e ricerche di laboratorio.

Legante

Il bitume, *per gli strati di collegamento e di usura*, dovrà essere del tipo "A" e "B" riportato nel punto 1.2.1.2 della presente Sezione.

Miscele

1) <u>Strato di collegamento (binder)</u>. La miscela degli aggregati da adottarsi per lo strato di collegamento dovrà avere una composizione granulometrica contenuta nel seguente fuso:

Serie crivelli e setacci U.N.I Passante: % totale in peso

Crivello 25	100
Crivello 15	$65 \div 100$
Crivello 10	$50 \div 80$
Crivello 5	$30 \div 60$
Setaccio 2	$20 \div 45$
Setaccio 0,4	$7 \div 25$
Setaccio 0,18	5 ÷ 15

Setaccio 0.075 $4 \div 8$

Il tenore di bitume dovrà essere compreso tra il 4,5% ed il 5,5% riferito al peso degli aggregati (C.N.R. 38-1973).

Esso dovrà comunque essere il minimo che consenta il raggiungimento dei valori di stabilità Marshall e compattezza di seguito riportati.

Il conglomerato bituminoso destinato alla formazione dello strato di collegamento dovrà avere i seguenti requisiti:

- la stabilità Marshall, eseguita a 60°C su provini costipati con 75 colpi di maglio per ogni faccia, dovrà risultare in ogni caso uguale o superiore a 900 Kg. Inoltre il valore della rigidezza Marshall, cioè il rapporto tra la stabilità misurata in Kg e lo scorrimento misurato in mm, dovrà essere in ogni caso superiore a 300 (C.N.R 30-1973).
- Gli stessi provini per i quali viene determinata la stabilità Marshall dovranno presentare una percentuale di vuoti residui compresa tra 3 ÷ 7%. La prova Marshall eseguita su provini che abbiano subito un periodo di immersione in acqua distillata per 15 giorni, dovrà dare un valore di stabilità non inferiore al 75% di quello precedentemente indicato. Riguardo alle misure di stabilità e rigidezza, sia per i conglomerati bituminosi tipo usura che per quelli tipo binder, valgono le stesse prescrizioni indicate per il conglomerato di base.
- 2) <u>Strato di usura.</u> La miscela degli aggregati da adottarsi per lo strato di usura dovrà avere una composizione granulometrica contenuta nei seguenti fusi:

: % totale in peso
) "B"

Il legante bituminosotipo "A" dovrà essere compreso tra il 4,5% ed il 6% riferito al peso totale degli aggregati (C.N.R. 38-1973).

L'uso del legante bitominoso tipo "B" è ammissibile soltanto in zone fredde (ad esempio quote elevate).

Il fuso tipo "A" dovrà comprendere le curve per strati di usura dello spessore compreso tra 4 e 6 cm.

Il fuso tipo "B" dovrà comprendere le curve per strati di usura dello spessore di 3 cm.

Nelle zone con prevalenti condizioni climatiche di pioggia e freddo, dovranno essere progettate e realizzate curve granulometriche di "tipo spezzata", utilizzando il fuso "A" di cui sopra, con l'obbligo che la percentuale di inerti compresa fra il passante al crivello 5 ed il trattenuto al setaccio 2 sia pari al $10\% \pm 2\%$.

Per prevalenti condizioni di clima asciutto e caldo, si dovranno usare curve prossime al limite inferiore.

Il conglomerato dovrà avere i seguenti requisiti:

a) resistenza meccanica elevatissima, cioè capacità di sopportare senza deformazioni permanenti le sollecitazioni trasmesse dalle ruote dei veicoli sia in fase dinamica che statica, anche sotto le più alte temperature estive, e sufficiente flessibilità per poter seguire sotto gli stessi carichi qualunque assestamento eventuale del sottofondo anche a lunga scadenza.

Il valore della stabilità Marshall (C.N.R. 30-1973) eseguita a 60°C su provini costipati con 75 colpi di maglio per faccia dovrà essere di almeno 10.000 N [1000 Kg].

Inoltre il valore della rigidezza Marshall, cioè il rapporto tra stabilità misurata in kg e lo scorrimento misurato in mm, dovrà essere in ogni caso superiore a 300.

La percentuale dei vuoti dei provini Marshall, sempre nelle condizioni di impiego prescelte, deve essere compresa fra 3% e 6%.

La prova Marshall eseguita su provini che abbiano subito un periodo di immersione in acqua distillata per 15 giorni, dovrà dare un valore di stabilità non inferiore al 75% di quelli precedentemente indicati;

- b) elevatissima resistenza all'usura superficiale;
- c) sufficiente ruvidezza della superficie tale da non renderla scivolosa;
- d) grande compattezza: il volume dei vuoti residui a rullatura terminata dovrà essere compreso fra 4% e 8%.

Ad un anno dall'apertura al traffico, il volume dei vuoti residui dovrà invece essere compreso fra 3% e 6% e impermeabilità praticamente totale; il coefficiente di permeabilità misurato su uno dei provini Marshall, riferentisi alle condizioni di impiego prescelte, in permeametro a carico costante di 50 cm d'acqua, non dovrà risultare inferiore a 10 - 6 cm/sec.

Sia per i conglomerati bituminosi per strato di collegamento che per strato di usura, nel caso in cui la prova Marshall venga effettuata a titolo di controllo della stabilità del conglomerato prodotto, i relativi provini dovranno essere confezionati con materiale prelevato presso l'impianto di produzione ed immediatamente costipato senza alcun ulteriore riscaldamento.

In tal modo la temperatura di costipamento consentirà anche il controllo delle temperature operative. Inoltre, poiché la prova va effettuata sul materiale passante al crivello da 25 mm, lo stesso dovrà essere vagliato se necessario.

Controllo dei requisiti di accettazione

Valgono le stesse prescrizioni indicate per lo strato di base.

Formazione e confezione degli impasti

Valgono le stesse prescrizioni indicate per lo strato di base, salvo che per il tempo minimo di miscelazione effettiva, che, con i limiti di temperatura indicati per il legante e gli aggregati, non dovrà essere inferiore a 25 secondi.

Attivanti l'adesione

Nella confezione dei conglomerati bituminosi dei vari strati (base, collegamento o binder e usura) dovranno essere impiegate speciali sostanze chimiche attivanti l'adesione dei bitumi - aggregato ("dopes" di adesività), costituite da composti azotati di natura e complessità varia, ovvero da ammine ed in particolare da alchilammido - poliammine ottenute per reazione tra poliammine e acidi grassi C16 e C18.

Si avrà cura di scegliere tra i prodotti in commercio quello che sulla base di prove comparative effettuate presso i Laboratori autorizzati avrà dato i migliori risultati e che conservi le proprie caratteristiche fisico chimiche anche se sottoposto a temperature elevate e prolungate.

Detti additivi polifunzionali per bitumi dovranno comunque resistere alla temperatura di oltre 180° C senza perdere più del 20% delle loro proprietà fisico - chimiche.

Il dosaggio potrà variare a seconda delle condizioni d'impiego, della natura degli aggregati e delle caratteristiche del prodotto, tra lo 0,3% e lo 0,6% sul peso del bitume da trattare (da kg 0,3 a kg 0,6 per ogni 100 kg di bitume).

I tipi, i dosaggi e le tecniche di impiego dovranno ottenere il preventivo benestare della Direzione dei Lavori.

L'immissione delle sostanze attivanti nella cisterna del bitume (al momento della ricarica secondo il quantitativo percentuale stabilito) dovrà essere realizzata con idonee attrezzature tali da garantire la perfetta dispersione e l'esatto dosaggio (eventualmente mediante un completo ciclo di riciclaggio del bitume attraverso la pompa apposita prevista in ogni impianto), senza inconvenienti alcuno per la sicurezza fisica degli operatori.

Per verificare che detto attivante l'adesione bitume - aggregato sia stato effettivamente aggiunto al bitume del conglomerato la Direzione dei Lavori preleverà in contraddittorio con 1' Impresa un campione del bitume additivato, che dovrà essere provato, su inerti acidi naturali (graniti, quarziti, silicei, ecc.) od artificiali (tipo ceramico, bauxite calcinata, "sinopal" od altro) con esito favorevole mediante la prova di spogliazione (di miscele di bitume - aggregato), la quale sarà eseguita secondo le modalità della Norma A.S.T.M. - D 1664/80.

Potrà essere inoltre effettuata la prova di spogliamento della miscela di legante idrocarburico ed aggregati in presenza di acqua (C.N.R 138-1992) per determinare l'attitudine dell'aggregato a legarsi in modo stabile al tipo di legante che verrà impiegato in opera.

In aggiunta alle prove normalmente previste per i conglomerati bituminosi è particolarmente raccomandata la verifica dei valori di rigidezza e stabilità Marshall.

Inoltre dovranno essere effettuate le prove previste da C.N.R. 149-1992 per la valutazione dell'effetto di immersione in acqua della miscela di aggregati lapidei e leganti idrocarburici per determinare la riduzione (Δ %) del valore di resistenza meccanica a rottura e di rigonfiamento della stessa miscela in conseguenza di un prolungato periodo di immersione in acqua (facendo ricorso alla prova Marshall (C.N.R. 30-1973), ovvero alla prova di trazione indiretta "Brasiliana" (C.N.R. n° 134/1991)).

Ai fini della sicurezza fisica degli operatori addetti alla stesa del conglomerato bituminoso (base, binder ed usura) l'autocarro o il veicolo sul quale è posta la cisterna dovrà avere il dispositivo per lo scarico dei gas combusti di tipo verticale al fine di evitare le dirette emissioni del gas di scarico sul retro. Inoltre dovranno essere osservate tutte le cautele e le prescrizioni previste dalla normativa vigente per la salvaguardia e la sicurezza della salute degli operatori suddetti."

Conglomerato bituminoso drenante per strati di usura

Il conglomerato bituminoso per usura drenante è costituito da una miscela di Pietrischetti frantumati, sabbie ed eventuale additivo impastato a caldo con legante bituminoso modificato.

Questo conglomerato dovrà essere impiegato prevalentemente con le seguenti f inalità:

- favorire l'aderenza in caso di pioggia eliminando il velo d'acqua superficiale soprattutto nelle zone con ridotta pendenza di smaltimento (zone di transizione rettifilo-clotoide, rettifilo-curva);
- abbattimento del rumore di rotolamento (elevata fonoassorbenza).

Inerti

Gli aggregati dovranno rispondere ai requisiti elencati al punto 1.3.1.1 del presente Capitolato, con le seguenti eccezioni:

- coefficiente di levigabilità accelerata C.L.A. ugualè o maggiore a 0.44;
- la percentuale delle sabbie provenienti da frantumazione sarà prescritta, di volta in volta, dalla Direzione Lavori in relazione ai valori di stabilità e scorrimento della prova Marshall che si intendono raggiungere, comunque non dovrà essere inferiore all'80% della miscela delle sabbie.

Legante

Il legante per tale strato di usura, dovranno essere del tipo modificato e presentare le seguenti caratteristiche:

Legante "E" : legante tipo "B" + 2% polietilene a bassa densità + 6% stirene butiadene stirene a struttura radiale

CARATTERISTICHE	UNITÀ	VALORE (x)
Penetrazione a 25°C/298°K, 100g, 5s	0,1 mm	35 - 45
Punto di rammollimento	K	333+343
Indice di penetrazione		+1/+3
Punto di rottura (Fraass), min.	K	261
Viscosità dinamica a T = 80° C / 353° K, gradiente di velocità = 1 s^{-1}	Pa.s	180 – 450
Viscosità dinamica a T = 160° C / 433° K, gradiente di velocità = 1 s^{-1}	Pa.s	0,2-2

Legante "F" : legante tipo "B" + 6% polietilene cavi (o 6% etilene vinilacetato + 2% polimeri) + 2% stirene butiadene stirene a struttura radiale

CARATTERISTICHE	UNITÀ	VALORE (x)
Penetrazione a 25°C/298°K, 100g, 5s	0,1 mm	50 - 70
Punto di rammollimento	K	328-343
Indice di penetrazione		+1/+3
Punto di rottura (Fraass), min.	K	261
Viscosità dinamica a T = 80° C / 353° K, gradiente di velocità = 1 s^{-1}	Pa.s	180 – 450
Viscosità dinamica a T = 160° C / 433° K, gradiente di velocità = 1 s^{-1}	Pa.s	0,2 – 1.8

Miscele

Sono previsti tre tipi di miscele, denominate rispettivamente: "granulone", "intermedio" e "monogranulare", che dovranno avere una composizione granulometrica compresa nei fusi riportati qui di seguito:

Passante totale in peso %

Serie crivell setacci U		Fuso A "Granulone"	Fuso B "Intermedio"	Fuso C "Monogranulare",
Crivello 20		100	100	100
Crivello 15		80 - 100	90 - 100	100
Crivello 10		15 - 35	35 - 50	85 - 100
Crivello 5		5 - 20	10 - 25	5 -20
setaccio	2	0 - 12	0 -12	0 - 12
setaccio	0,4	0 - 10	0 - 10	0 - 10
setaccio	0,18	0 - 8	0 - 8	0 - 8

setaccio 0,075 0 - 6 0 - 6 0 - 6

Il tenore di legante bituminoso dovrà essere compreso tra il 5% ed il 6,5% riferito al peso totale degli aggregati.

Le caratteristiche prestazionali di ciascun tipo di miscela sono le seguenti:

drenabilità ottima: miscela "granulone" (fuso A)
 drenabilità elevata: miscela "intermedio" (fuso B)
 drenabilità buona: miscela "monogranulare" (fuso C)

Le tre miscele favoriscono tutte una elevata fonoassorbenza; la Direzione Lavori si riserva la facoltà di verificarla mediante il controllo delle miscele stesse, applicando il metodo ad onde stazionarie con l'attrezzatura standard definita "tubo di Kundt" su carote del diametro di 10 cm prelevate in sito.

Le carote dovranno essere prelevate dopo il 150 giorno dalla stesa del conglomerato. In questo caso il coefficiente di fonoassorbimento "α" in condizioni di incidenza normale dovrà essere:

Frequenza (Hz)	Coeff. fonoassorbimento (α)
400 – 630	$\alpha > 0.15$
800 - 1600	$\alpha\Box>0.30$
2000 - 2500	$\alpha > 0.15$

Il controllo dovrà essere effettuato anche mediante rilievi in sito con il metodo dell'impulso riflesso, comunque dopo il 150 giorno dalla stesa del conglomerato.

In questo caso con una incidenza radente di 300 i valori di α□dovranno essere:

Frequenza (Hz)	Coeff. fonoassorbimento α
400 - 630	$\alpha > 0.25$
800 - 1250	$\alpha\Box>0,50$
1600 - 2500	$\alpha\Box>0.25$

Il conglomerato dovrà avere i seguenti requisiti:

- il valore della stabilità Marshall (CNR 30 73), eseguita a 333 K su provini costipati con 75 colpi di maglio per faccia, dovrà risultare non inferiore a 500 kg per conglomerato con Fuso "A" e 600 kg per quelli con Fusi "C" e "B".
- Il valore del modulo di rigidezza Marshall, cioè il rapporto tra la stabilità Marshall misurata in chilogrammi e lo scorrimento misurato in millimetri dovrà essere superiore a 200 per il Fuso "A" ed a 250 per i Fusi "B" e "C"; gli stessi provini per i quali viene determinata la stabilità Marshall dovranno presentare una percentuale di vuoti residui (CNR 39 73) nei limiti di seguito indicati:

miscela "granulone",	(fuso A)	16% - 18%
miscela "intermedio"	(fuso B)	14% - 16%
miscela "monogranulare"	(fuso C)	12% - 14%

I provini per le misure di stabilità e rigidezza e per la determinazione della percentuale dei vuoti residui dovranno essere confezionati presso l'impianto di produzione e/o presso la stesa.

Irioltre la Direzione Lavori si riserva la facoltà di controllare la miscela di usura drenante tramite la determinazione della resistenza a trazione indiretta e della relativa deformazione a rottura (prova "Brasiliana") (CNR 97 – 1984).

I valori relativi, per i tre tipi di miscela dovranno risultare nei limiti della tabella che segue:

Temperatura di prova	283 K	298 K	313 K
Resistenza a trazione indiretta (N/mm²)	0,70-1,1	10 0,25 – 0,42	0,12-0,20
Coefficiente di trazione indiretta (N/mm²)	≥ 55	≥ 22	≥ 12

Confezione e posa in opera del conglomerato

Valgono le prescrizioni già indicate in precedenza, con l'avvertenza che il tempo minimo di miscelazione non dovrà essere inferiore a 25 s.

La temperatura di costipamento che dovrà essere compresa tra 413 e 423 K per le miscele ottenute con legante bituminoso di tipo "E".

Al termine della compattazione lo strato di usura drenante dovrà avere un peso di volume uniforme in tutto lo spessore, non inferiore al 96% di quello Marshall rilevato all'impianto o alla stesa.

Tale verifica dovrà essere eseguita con frequenza giornaliera secondo la norma (CNR 40 – 1973) e sarà determinata su carote di 20 cm di diametro.

Il coefficiente di permeabilità a carico costante (Kv in cm/s) determinato in laboratorio su carote di diametro 20 cm prelevate in sito dovrà essere maggiore o uguale a:

 $Kv = 15*1.0^{-2}$ cm/s (media aritmetica su tre determinazioni).

La capacità drenante eseguita in sito e misurata con permeametro a colonna d'acqua di 250 mm su un'area di 154 cm² e uno spessore di pavimentazione tra i 4 e 5 cm dovrà essere maggiore di 12 dm³/min per la miscela del fuso "A" e maggiore di 8 dm³/min per le miscele dei fusi "B" e "C".

Il piano di posa dovrà essere perfettamente pulito e privo di eventuali tracce di segnaletica orizzontale.

Si dovrà provvedere quindi alla stesa di una uniforme mano di attacco, nella quantità compresa tra kg/m² 0,6 e 2,0, secondo le indicazione della Direzione Lavori, ed al successivo eventuale spargimento di uno strato di sabbia o graniglia prebitumata.

Dovrà altresì essere curato lo smaltimento laterale delle acque che percolano all'interno dell'usura drenante.

- Trattamenti superficiali

Generalità

Immediatamente prima di dare inizio ai trattamenti superficiali di prima o di seconda mano, l'Impresa delimiterà i bordi del trattamento con un arginello in sabbia onde ottenere i trattamenti stessi profilati ai margini.

Ultimato il trattamento resta a carico dell'Impresa l'ulteriore profilatura mediante asportazione col piccone delle materie esuberanti e colmatura delle parti mancanti col pietrischetto bituminoso.

Trattamento con emulsione a freddo.

Preparata la superficie da trattare, si procederà all'applicazione dell'emulsione bituminosa al 55%, in ragione, di norma, di kg 3 per metro quadrato.

Tale quantitativo dovrà essere applicato in due tempi.

In un primo tempo sulla superficie della massicciata dovranno essere sparsi kg 2 di emulsione bituminosa e dm³ 12 di graniglia da mm 10 a mm. 15 per ogni metro quadrato.

In un secondo tempo, che potrà aver luogo immediatamente dopo, verrà sparso sulla superficie precedente il residuo di kg 1 di emulsione bituminosa e dm³ 8 di graniglia da mm 5 a mm 10 per ogni metro quadrato.

Allo spargimento della graniglia seguirà una leggera rullatura, da eseguirsi preferibilmente con rullo compressore a tandem, per ottenere la buona penetrazione della graniglia negli interstizi superficiali della massicciata.

Lo spargimento dell'emulsione dovrà essere eseguito con spanditrici a pressione che garantiscano l'esatta ed uniforme distribuzione, sulla superficie trattata, del quantitativo di emulsione prescritto per ogni metro quadrato di superficie nonché, per la prima applicazione, la buona penetrazione nel secondo strato della massicciata fino a raggiungere la superficie del primo, sì da assicurare il legamento dei due strati.

Lo spandimento della graniglia o materiale di riempimento dovrà essere fatto con adatte macchine che assicurino una distribuzione uniforme.

Per il controllo della qualità del materiale impiegato si preleveranno i campioni con le modalità stabilite precedentemente.

Indipendentemente da quanto possa risultare dalle prove di laboratorio e dal preventivo benestare da parte della Direzione dei Lavori sulle forniture delle emulsioni, l'Impresa resta sempre contrattualmente obbligata a rifare tutte quelle applicazioni che, dopo la loro esecuzione, non abbiano dato soddisfacenti risultati, e che sotto l'azione delle piogge abbiano dato segni di rammollimento, stemperamento o si siano dimostrate soggette a facile asportazione mettendo a nudo la sottostante massicciata.

Trattamento con bitume a caldo

Il trattamento con bitume a caldo, su pavimentazioni bitumate, sarà fatto utilizzando almeno 1 kg/m² di bitume, dopo una accurata ripulitura, fatta esclusivamente a secco, della pavimentazione esistente.

Gli eventuali rappezzi che si rendessero necessari saranno eseguiti con la stessa tecnica a cura e spese dell'Impresa.

L'applicazione di bitume a caldo sarà eseguita sul piano viabile perfettamente asciutto ed in periodo di caldo secco

Ciò implica che i mesi più favorevoli sono quelli da maggio a settembre e che in caso di pioggia il lavoro si debba sospendere.

Il bitume sarà riscaldato a temperatura fra 160°C e 180°C entro adatte caldaie che permettono il controllo della temperatura stessa.

L'applicazione dovrà essere fatta mediante spanditrice a pressione in modo tale da garantire l'esatta distribuzione con perfetta uniformità su ogni metro quadrato del quantitativo di bitume prescritto.

Con tale applicazione, debitamente ed immediatamente ricoperta di graniglia di pezzatura corrispondente per circa il 70% alle massime dimensioni prescritte ed in quantità di circa m³ 1,20 per 100 m², dovrà costituirsi il manto per la copertura degli elementi pietrosi della massicciata precedentemente trattata con emulsione bituminosa.

Allo spandimento della graniglia seguirà una prima rullatura con rullo leggero e successivamente altra rullatura con rullo di medio tonnellaggio, non superiore alle t 14, in modo da ottenere la buona penetrazione del materiale nel bitume.

Per il controllo della qualità del materiale impiegato, si preleveranno i campioni con le modalità prescritte.

Verificandosi in seguito affioramenti di bitume ancora molle l'Impresa provvederà, senza ulteriore compenso, allo spandimento della conveniente quantità di graniglia nelle zone che lo richiedano, procurando che essa abbia ad incorporarsi nel bitume a mezzo di adatta rullatura leggera, in modo da saturarla completamente.

L'Impresa sarà obbligata a rifare, a sua cura, tutte quelle parti della pavimentazione che per cause qualsiasi dessero indizio di cattiva o mediocre riuscita e cioè presentassero accentuate deformazioni della sagoma stradale, ovvero ripetute abrasioni superficiali non giustificate dalla natura e dalla intensità del traffico.

L'Ente si riserva la facoltà di variare le modalità esecutive di applicazione del bitume a caldo, senza che per questo l'Appaltatore possa sollevare eccezioni ed avanzare particolari richieste di compensi.

Tanto nei trattamenti di prima mano con emulsione bituminosa, quanto in quelli di seconda mano con bitume a caldo, l'Impresa è obbligata a riportare sul capostrada la graniglia eventualmente non incorporata. Quella che decisamente non può essere assorbita andrà raccolta e depositata nelle piazzole, rimanendo di proprietà dell'Amministrazione.

Gli oneri di cui sopra sono compresi e compensati nei prezzi di Elenco e pertanto nessun maggior compenso spetta all'Impresa per tale titolo.

Trattamento a caldo con bitume liquido

Il bitume liquido da impiegare per esecuzione di trattamenti dovrà essere quello ottenuto con flussaggio di bitume a penetrazione $100 \div 120$ e costituito, se di tipo 150/300 per almeno l' 80% da bitume, se di tipo 350/700 per almeno l'85% da bitume e per la restante parte, in ambedue i casi, da olio di catrame.

I bitumi liquidi, da impiegarsi per l'esecuzione di trattamenti superficiali, dovranno avere le caratteristiche prescritte dal fascicolo n. 7 delle norme del C.N.R del 1957.

Il tipo di bitume liquido da impiegarsi sarà prescritto dalla Direzione dei Lavori tenendo conto che per la temperatura ambiente superiore ai 15°C si dovrà dare la preferenza al bitume liquido 350/700, mentre invece con temperatura ambiente inferiore dovrà essere impiegato quello con viscosità 150/300.

In nessun caso si dovrà lavorare con temperature ambienti inferiori agli 8°C.

Con le consuete modalità si procederà al prelievo dei campioni prima dell'impiego, i quali verranno sottoposti all'analisi presso il Centro Sperimentale dell'ANAS di Cesano o presso altri Laboratori Ufficiali.

Il lavoro di trattamento dovrà essere predisposto su metà strada per volta, onde non interrompere la continuità del traffico e la buona riuscita del lavoro.

Il vecchio manto bituminoso dovrà essere sottoposto ad una accurata operazione di depolverizzazione e raschiatura della superficie, mediante spazzoloni, scope metalliche e raschietti.

Cosi preparata la strada, la tratta da sottoporre a trattamento sarà delimitata lungo l'asse stradale per l'esecuzione a metà carreggiata per volta e poi, in modo uniforme, sarà distribuito sulla superficie, con distribuzione a pressione, il bitume liquido nella quantità media di 1 kg/m² previo suo riscaldamento a temperatura tra i 100°C e 110°C entro adatti apparecchi che permettano il controllo della temperatura stessa.

La distribuzione del bitume dovrà avvenire con perfetta uniformità su ogni metro quadrato nel quantitativo di bitume prescritto.

Dovranno evitarsi in modo assoluto le chiazze e gli eccessi di bitume, rimanendo stabilito che le aree cosi trattate dovranno essere raschiate e sottoposte a nuovo trattamento a totale spesa dell'Impresa.

Immediatamente dopo lo spandimento del bitume, la superficie stradale dovrà essere ricoperta con pietrischetto in ragione di litri 20 per metro quadrato, di cui litri 17 dovranno essere di pezzatura rigorosa da mm 16 a mm 18 e litri 3 di graniglia da mm 2 a mm 4.

Pertanto, gli ammannimenti rispettivi di pietrischetto e di graniglia su strada, dovranno essere fatti a cumuli alternati rispondenti singolarmente alle diverse pezzature e nei volumi rispondenti ai quantitativi fissati.

I quantitativi di pietrischetto e di graniglia così ammanniti verranno controllati con apposite misurazioni da eseguirsi prima dell'inizio della bitumatura.

Il pietrischetto della pezzatura più grossa verrà sparso uniformemente sulla superficie bitumata ed in modo che gli elementi siano fra di loro a stretto contatto.

Dopo pochi passaggi di rullo pesante si procederà al conguaglio delle eventuali irregolarità di sparsa del pietrischetto suddetto, facendo le opportune integrazioni e, quindi, si procederà allo spargimento della graniglia minuta ad intasamento dei vuoti rimasti fra gli elementi del pietrischetto precedentemente sparso.

Allo spandimento completo del pietrischetto e della graniglia seguirà la rullatura con rullo pesante, in modo da ottenere la buona penetrazione del materiale nel bitume.

Si dovrà aver cura che il pietrischetto e la graniglia, all'atto dello spargimento, siano bene asciutti ed in precedenza riscaldati dal sole rimanendo vietato l'impiego di materiale umido.

I tratti sottoposti a trattamento dovranno rimanere chiusi al traffico per almeno 18 ore e, quindi, la bitumatura dovrà essere eseguita su strisce di metà strada alternate alla lunghezza massima di m 300.

A tal fine l'Impresa dovrà disporre un apposito servizio di guardiania diurna e notturna per il pilotaggio del traffico, del cui onere s'è tenuto largamente conto nella determinazione del prezzo unitario.

L'Impresa provvederà a sua cura e spese all'apposizione di cartelli di segnalazione, cavalletti, ecc., occorrenti per la chiusura al traffico delle estese trattate.

Il pietrischetto che risulterà non incorporato nel bitume per nessun motivo potrà essere impiegato in trattamenti di altre estese di strada.

Infine l'Impresa provvederà, con i propri operai, alla esatta profilatura dei bordi della nuova pavimentazione, al ricollocamento in opera delle punteggiature marginali spostate dal compressore, nonché alla raschiatura ed eventuale pulitura di zanelle, di cordonate, di marciapiedi, imbrattati durante l'esecuzione dei lavori, essendo tali oneri stati compresi nella determinazione dei prezzi di Elenco.

Si pattuisce che quelle aree di trattamento che in prosieguo di tempo risultassero difettose, ovvero prive di penetrazione di pietrischetto e di graniglia, saranno dall'Appaltatore sottoposte, a totale sua spesa, ad un nuovo ed analogo trattamento.

Scarificazione di pavimentazioni esistenti

Per i tratti di strada già pavimentati sui quali dovrà procedersi a ricarichi o risagomature, l'Impresa dovrà dapprima ripulire accuratamente il piano viabile, provvedendo poi alla scarificazione della massicciata esistente adoperando, all'uopo, apposito scarificatore opportunamente trainato e guidato.

La scarificazione sarà spinta fino alla profondità ritenuta necessaria dalla Direzione dei Lavori entro i limiti indicati nel relativo articolo di Elenco Prezzi, provvedendo poi alla successiva vagliatura e raccolta in cumuli del materiale utilizzabile, su aree di deposito procurate a cura e spese dell'Impresa.

Fresatura di strati in conglomerato bituminoso con idonee attrezzature

La fresatura della sovrastruttura per la parte legata a bitume per l'intero spessore o parte di esso dovrà essere effettuata con idonee attrezzature, munite di frese a tamburo, funzionanti a freddo, munite di nastro caricatore per il carico del materiale di risulta.

Potranno essere eccezionalmente impiegate anche attrezzature tradizionali quali ripper, escavatore, demolitori, ecc., a discrezione della D.L. ed a suo insindacabile giudizio.

Le attrezzature tutte dovranno essere perfettamente efficienti e funzionanti e di caratteristiche meccaniche, dimensioni e produzioni approvate preventivamente dalla D.L.

Nel corso dei lavori la D.L. potrà richiedere la sostituzione delle attrezzature anche quando le caratteristiche granulometriche risultino idonee per il loro reimpiego in impianti di riciclaggio.

La superficie del cavo dovrà risultare perfettamente regolare in tutti i punti, priva di residui di strati non completamente fresati che possano compromettere l'aderenza delle nuove stese da porre in opera (questa prescrizione non è valida nel caso di demolizione integrale degli strati bituminosi).

L'Impresa si dovrà scrupolosamente attenere agli spessori di demolizione stabiliti dalla D.L.

Qualora questi dovessero risultare inadeguati e comunque diversi in difetto o in eccesso rispetto all'ordinativo di lavoro, l'Impresa è tenuta a darne immediatamente comunicazione al Direttore dei Lavori o ad un suo incaricato che potranno autorizzare la modifica delle quote di scarifica.

Il rilievo dei nuovi spessori dovrà essere effettuato in contraddittorio.

Lo spessore della fresatura dovrà essere mantenuto costante in tutti i punti e sarà valutato mediando l'altezza delle due pareti laterali con quella della parte centrale del cavo.

La pulizia del piano di scarifica, nel caso di fresature corticali o subcorticali dovrà essere eseguita con attrezzature munite di spazzole rotanti e/o dispositivi aspiranti o simili in grado di dare un piano perfettamente pulito.

Le pareti dei tagli longitudinali dovranno risultare perfettamente verticali e con andamento longitudinale rettilineo e privo di sgretolature.

Sia il piano fresato che le pareti dovranno, prima della posa in opera dei nuovi strati di riempimento, risultare perfettamente puliti, asciutti e uniformemente rivestiti dalla mano di attacco in legante bituminoso.

- Strati di fondazione

Fondazione stradale in misto granulometricamente stabilizzato

Prove di laboratorio Accertamenti preventivi:

Le caratteristiche e l'idoneità dei materiali saranno accertate mediante le seguenti prove di laboratorio:

- a) granulometria compresa del fuso riportato al punto 1.1.1.1 e avente andamento continuo e uniforme praticamente concorde a quello delle curve limiti;
- b) dimensioni non superiori a 71 mm, né forma appiattita, allungata o lenticolare;

- c) rapporto tra il passante al setaccio 0,075 ed il passante al setaccio 0,4 inferiore a 2/3;
- d) prova Los Angeles (CNR 34 1973) eseguita sulle singole pezzature con perdita in peso inferiore al 30%;
- e) equivalente in sabbia (CNR 27 1972) misurato sulla frazione passante al setaccio n 4 compreso tra 25 e 65 (la prova va eseguita con dispositivo meccanico di scuotimento).

Tale controllo dovrà essere eseguito anche sul materiale prelevato dopo costipamento.

Il limite superiore dell'equivalente in sabbia -65- potrà essere variato dalla Direzione Lavori in funzione delle provenienze e delle caratteristiche del materiale.

Per tutti i materiali aventi equivalente in sabbia compreso fra 25-35, la Direzione Lavori richiederà in ogni caso (anche se la miscela contiene più del 60% in peso di elementi frantumati) la verifica dell'indice di portanza CBR (CNR – UNI 10009) di cui al successivo comma.

f) indice di portanza CBR (CNR – UNI 10009) dopo quattro giorni di imbibizione in acqua (eseguito sul materiale passante al crivello 25) non minore di 50.

inoltre richiesto che tale condizione sia verificata per un intervallo di \pm 2% rispetto all'umidità ottima di costipamento.

g) Prova di costipamento delle terre, con energia AASHO modificata (CNR 69 – 1979).

Se le miscele contengono oltre il 60% in peso di elementi frantumati a spigoli vivi, l'accettazione avverrà sulla base delle sole caratteristiche indicate ai precedenti commi a), b), d), e), salvo nel caso citato al comma e) in cui la miscela abbia equivalente in sabbia compreso tra 25 - 35.

Prove di controllo in fase esecutiva

L'Impresa sarà obbligata a prestarsi in ogni tempo e di norma periodicamente per le forniture di materiali di impiego continuo, alle prove ed esami dei materiali impiegati e da impiegare, ed inviando i campioni di norma presso un Laboratorio Ufficiale.

I campioni verranno prelevati in contraddittorio.

Degli stessi potrà essere ordinata la conservazione in luogo indicato dalla D.L. previa apposizione dei sigilli e firme del Direttore dei Lavori e dell'Impresa e nei modo più adatti a garantire l'autenticità e la conservazione.

I risultati ottenuti in tali Laboratori saranno i soli riconosciuti validi dalle due parti; ad essi si farà esclusivo riferimento a tutti gli effetti delle presenti Norme Tecniche.

Prove di laboratorio

Le caratteristiche e l'idoneità dei materiali saranno accertate mediante le medesime prove di laboratorio riportate al punto 2.1.1.1.

La rispondenza delle caratteristiche granulometriche delle miscele con quelle di progetto dovrà essere verificata con controlli giornalieri, e comunque ogni 300 m³ di materiale posto in opera.

L'indice di portanza CBR verrà effettuato ogni 500 m² di strato di fondazione realizzato.

Prove in sito

Le caratteristiche dei materiali, per ogni singolo strato posto in opera, saranno accertate mediante le seguenti prove in sito:

- Massa volumica della terra in sito: dovranno essere effettuati almeno due prelievi giornalieri, e comunque ogni 300 m³ di materiale posto in opera;
- Prova di carico con piastra circolare, nell'intervallo 0,15 0,25 MPa, non dovrà essere inferiore ai 80 MPa. Sarà effettuata ogni 300 m di strada o carreggiata, o frazione di 300 m e comunque ogni 300 m³ di materiale posto in opera.
- Lo spessore dello strato dovrà essere verificato con la frequenza di almeno un carotaggio ogni 500 m di strada o carreggiata, tolleranze in difetto non dovranno essere superiori al 5% nel 98% dei rilevamenti in caso contrario, la frequenza dovrà essere incrementata secondo le indicazioni della Direzione Lavori e l'Impresa a sua cura e spese, dovrà compensare gli spessori carenti incrementando in ugual misura lo spessore dello strato di conglomerato bituminoso sovrastante.

Fondazione in misto cementato confezionato in centrale Caratteristiche dei materiali da impiegare

Accertamenti preventivi:

Le caratteristiche e l'idoneità dei materiali saranno accertate mediante le seguenti prove di laboratorio:

Inerti

Gli inerti da impiegare per la realizzazione della miscela saranno assoggettati alle seguenti prove:

- a) granulometria compresa nel fuso riportato precedentemente ed avente andamento continuo ed uniforme (CNR 23 1971):
- b) dimensioni non superiori a 40 mm, né di forma appiattita, allungata o lenticolare;
- b) prova Los Angeles (CNR 34 1973) con perdita in peso non superiore al 30% in peso;
- c) equivalente in sabbia (CNR 27 1972) compreso fra 30-60;
- d) indice di plasticità (CNR UNI 10014) non determinabile (materiale non plastico).

Legante

Dovrà essere impiegato cemento normale (Portland, pozzolanico o d'alto forno).

Dovranno soddisfare ai requisiti di legge e alle prescrizioni riportate nella sezione "calcestruzzi" del presente Capitolato.

Acqua

La quantità di acqua nella miscela sarà quella corrispondente all'umidità ottima di costipamento (CNR 69 – 1978) con una variazione compresa entro $\pm 2\%$ del peso della miscela per consentire il raggiungimento delle resistenze indicate di seguito.

Studio della miscela in laboratorio

L'Impresa dovrà sottoporre all'accettazione della Direzione Lavori la composizione granulometrica da adottare e le caratteristiche della miscela.

La percentuale di cemento e delle eventuali ceneri volanti, come la percentuale di acqua, dovranno essere stabilite in relazione alle prove di resistenza eseguite sui provini cilindrici confezionati entro stampi CBR (CNR-UNI 10009) impiegati senza disco spaziatore (altezza 17,78 cm, diametro 15,24 cm, volume 3242 cm³); per il confezionamento dei provini gli stampi verranno muniti di collare di prolunga allo scopo di

consentire il regolare costipamento dell'ultimo strato con la consueta eccedenza di circa 1 cm rispetto all'altezza dello stampo vero e proprio.

Tale eccedenza dovrà essere eliminata, previa rimozione del collare suddetto e rasatura dello stampo, affinché l'altezza del provino risulti definitivamente di 17, 78 cm.

La miscela di studio verrà preparata partendo da tutte le classi previste per gli aggregati, mescolandole tra loro, con il cemento, l'eventuale cenere e l'acqua nei quantitativi necessari ad ogni singolo provino.

Comunque prima di immettere la miscela negli stampi si opererà una vagliatura sul crivello UNI 25 mm allontanando gli elementi trattenuti (di dimensione superiore a quella citata) con la sola pasta di cemento ad essi aderente.

La miscela verrà costipata su 5 strati, con il pestello e l'altezza di caduta di cui alla norma AASHTO modificato, con 85 colpi per strato, in modo da ottenere una energia di costipamento pari a quella della prova citata (diametro pestello 51+0,5 mm, peso pestello 4,535+0,005 Kg, altezza di caduta 45,7 cm).

I provini dovranno essere estratti dallo stampo dopo 24 h e portati successivamente a stagionatura per altri 6 giorni in ambiente umido (umidità relativa non inferiore al 90% e temperatura di circa 293 K); in caso di confezione in cantiere la stagionatura si farà in sabbia mantenuta umida.

Operando ripetutamente nel modo suddetto, con l'impiego di percentuali in peso d'acqua diverse (sempre riferite alla miscela intera, compreso quanto eliminato per vagliatura sul crivello 25) potranno essere determinati i valori necessari al tracciamento dei diagrammi di studio.

Lo stesso dicasi per le variazioni della percentuale di legante.

I provini dovranno avere resistenza a compressione a 7 giorni non minore di 2,5 MPa e non superiore a 4,5 MPa, ed a trazione secondo la prova "brasiliana" (CNR 97 – 1984), non inferiore a 0,25 MPa.

Per particolari casi è facoltà della Direzione Lavori accettare valori di resistenza a compressione fino a 7,5 MPa (questi valori per la compressione e la trazione devono essere ottenuti dalla media di 3 provini, se ciascuno dei singoli valori non si scosta dalla media stessa di $\pm 15\%$, altrimenti dalla media dei due restanti dopo aver scartato il valore anomalo).

Da questi dati di laboratorio dovranno essere scelti la curva, la densità e le resistenze da confrontare con quelle di progetto e da usare come riferimento nelle prove di controllo.

Prove di controllo in fase esecutiva

L'Impresa sarà obbligata a prestarsi in ogni tempo e di norma periodicamente per le forniture di materiali di impiego continuo, alle prove ed esami dei materiali impiegati e da impiegare, ed inviando dei campioni di norma presso un Laboratorio Ufficiale.

I campioni verranno prelevati in contraddittorio.

Degli stessi potrà essere ordinata la conservazione in luogo indicato dalla D.L. previa apposizione dei sigilli e firme del Direttore dei Lavori e dell'Impresa e nei modo più adatti a garantire l'autenticità e la conservazione.

I risultati ottenuti in tali Laboratori saranno i soli riconosciuti validi dalle due parti ; ad essi si farà esclusivo riferimento a tutti gli effetti delle presenti Norme Tecniche.

Prove di laboratorio

Le caratteristiche e l'idoneità dei materiali saranno accertate mediante le medesime prove di laboratorio, riportate nel Capitolato.

La rispondenza delle caratteristiche granulometriche delle miscele con quelle di progetto dovrà essere verificata con controlli giornalieri, e comunque ogni 300 m³ di materiale posto in opera.

Le caratteristiche di resistenza ogni 500 m² di strato di fondazione realizzato.

Prove in sito

Le caratteristiche dei materiali, posti in opera, saranno accertate mediante le seguenti prove in sito:

- Massa volumica della terra in sito: dovranno essere effettuati almeno due prelievi giornalieri, e comunque ogni 300 m³ di materiale posto in opera;
- Prova di carico con piastra circolare, nell'intervallo 0,15 0,25 MPa, per ogni strato di materiale posto in opera, non dovrà essere inferiore ai 150 MPa. Sarà effettuata ogni 300 m di strada e nel caso di strada a due carreggiate per ogni carreggiata, o frazione di 300 m e comunque ogni 300 m³ di materiale posto in opera.
- Lo spessore dello strato dovrà essere verificato con la frequenza di almeno un carotaggio ogni 500 m di strada o carreggiata, tolleranze in difetto non dovranno essere superiori al 5% nel 98% dei rilevamenti in caso contrario, la frequenza dovrà essere incrementata secondo le indicazioni della Direzione Lavori e l'Impresa a sua cura e spese, dovrà compensare gli spessori carenti incrementando in ugual misura lo spessore dello strato di conglomerato bituminoso sovrastante.

- Strato di Base

Caratteristiche dei materiali da impiegare

Accertamenti preventivi:

Le caratteristiche e l'idoneità dei materiali saranno accertate mediante le seguenti prove di laboratorio:

Inerti

Gli inerti da impiegare dovranno essere sottoposti alle seguenti prove di laboratorio:

- a) granulometria: la cui curva dovrà essere contenuta nel fuso riportato precedentemente.
- b) prova Los Angeles (CNR 34 1973) con perdita in peso sulle singole pezzature non superiore al 25 % in peso;
- c) equivalente in sabbia (CNR 27 1972) superiore a 50;
- d) granulometria degli additivi (eventuali): che dovranno soddisfare i seguenti requisiti:
- setaccio UNI 0,18 (ASTM n° 80): passante in peso 100%
- setaccio UNI 0,18 (ASTM n° 80): passante in peso 90%

Legante

Le caratteristiche dei leganti bituminosi dovranno essere accertate mediante prove di laboratorio prima del loro impiego nella confezione dei conglomerati, e dovranno soddisfare i requisiti riportati nel presente Capitolato.

Studio della miscela in laboratorio

L' Impresa è poi tenuta a presentare con congruo anticipo rispetto all'inizio delle lavorazioni e per ogni cantiere di confezione, la composizione delle miscele che intende adottare, ogni composizione delle miscele che intende adottare.

Ogni composizione proposta dovrà essere corredata da una completa documentazione degli studi effettuati in laboratorio, attraverso i quali l'Impresa ha ricavato la ricetta ottimale.

Il conglomerato dovrà avere i seguenti requisiti:

- il valore della stabilità Marshall (C.N.R. 30 -1973) eseguita a 60°C su provini costipati con 75 colpi di maglio per faccia, dovrà risultare non inferiore a 700 kg; inoltre il valore della rigidezza Marshall, cioè il rapporto tra la stabilità misurata in kg e lo scorrimento misurato in mm, dovrà essere superiore a 250;
- gli stessi provini per i quali viene determinata la stabilità Marshall dovranno presentare una percentuale di vuoti residui compresi fra 4% e 7%. I provini per le misure di stabilità e rigidezza anzidette dovranno essere confezionati presso l'impianto di produzione e/o presso la stesa. La temperatura di compattazione dovrà essere uguale o superiore a quella di stesa; non dovrà però superare quest'ultima di oltre 10°C.
- Le miscele di aggregati e leganti idrocarburici dovranno rispondere inoltre anche alle norme C.N.R. 134 -1991;

La Direzione Lavori si riserva di approvare i risultati prodotti o di fare eseguire nuove ricerche. L'approvazione non ridurrà comunque la responsabilità dell'Impresa, relativa al raggiungimento dei requisiti finali dei conglomerati in opera

Prove di controllo in fase esecutiva

L'Impresa sarà obbligata a prestarsi in ogni tempo e di norma periodicamente per le forniture di materiali di impiego continuo, alle prove ed esami dei materiali impiegati e da impiegare, ed inviando dei campioni di norma presso un Laboratorio Ufficiale.

I campioni verranno prelevati in contraddittorio.

Degli stessi potrà essere ordinata la conservazione in luogo indicato dalla D.L. previa apposizione dei sigilli e firme del Direttore dei Lavori e dell'Impresa e nei modo più adatti a garantire l'autenticità e la conservazione.

I risultati ottenuti in tali Laboratori saranno i soli riconosciuti validi dalle due parti; ad essi si farà esclusivo riferimento a tutti gli effetti delle presenti Norme Tecniche.

Inoltre con la frequenza necessaria saranno effettuati periodici controlli delle bilance, delle tarature dei termometri dell'impianto, la verifica delle caratteristiche del bitume, la verifica dell'umidità residua degli aggregati minerali all'uscita dall'essiccatore ed ogni altro controllo ritenuto opportuno.

Prove di laboratorio

Dovranno essere effettuate, quando necessarie, ed almeno con frequenza giornaliera:

- la verifica granulometrica dei singoli aggregati approvvigionati in cantiere e quella degli aggregati stessi all'uscita dei vagli di riclassificazione;
- la verifica della composizione del conglomerato (granulometria degli inerti, percentuale del bitume, percentuale di additivo) prelevando il conglomerato all'uscita del mescolatore o a quella della tramoggia di stoccaggio;
- la verifica delle caratteristiche Marshall del conglomerato e precisamente: peso di volume (C.N.R. 40-1973), media di due prove; percentuale di vuoti (C.N.R. 39-1973), media di due prove; stabilità e rigidezza Marshall;

- la verifica dell'adesione bitume-aggregato secondo la prova ASTM-D 1664/89-80 e/o secondo la prova di spoliazione (C.N.R. 138 –1992);
- le caratteristiche del legante bituminoso.

Non sarà ammessa una variazione del contenuto di aggregato grosso superiore a \pm 5% e di sabbia superiore a \pm 3% sulla percentuale corrispondente alla curva granulometrica prescelta, e di \pm 1,5% sulla percentuale di additivo.

Per la quantità di bitume non sarà tollerato uno scostamento dalla percentuale stabilita di $\pm 0.3\%$.

Tali valori dovranno essere soddisfatti dall'esame delle miscele prelevate all'impianto come pure dall'esame delle eventuali carote prelevate in sito.

In cantiere dovrà essere tenuto apposito registro numerato e vidimato dalla Direzione Lavori sul quale l'Impresa dovrà giornalmente registrare tutte le prove ed i controlli effettuati.

In corso d'opera ed in ogni fase delle lavorazioni la Direzione Lavori effettuerà, a sua discrezione, tutte le verifiche, prove e controlli, atti ad accertare la rispondenza qualitativa e quantitativa dei lavori alle prescrizioni contrattuali.

Prove in sito

Lo spessore dello strato dovrà essere verificato con la frequenza di almeno un carotaggio ogni 500 m di strada o carreggiata, tolleranze in difetto non dovranno essere superiori al 5% nel 98% dei rilevamenti in caso contrario, la frequenza dovrà essere incrementata secondo le indicazioni della Direzione Lavori e l'Impresa a sua cura e spese, dovrà compensare gli spessori carenti incrementando in ugual misura lo spessore dello strato di conglomerato bituminoso sovrastante.

La Direzione Lavori si riserva di approvare i risultati prodotti o di fare eseguire nuove ricerche. L'approvazione non ridurrà comunque la responsabilità dell'Impresa, relativa al raggiungimento dei requisiti finali dei conglomerati in opera.

Una volta accettata dalla D.L. la composizione proposta, l'Impresa dovrà ad essa attenersi rigorosamente comprovandone l'osservanza con esami giornalieri.

- Strati di collegamento (binder) e di usura Caratteristiche dei materiali da impiegare

Accertamenti preventivi:

Le caratteristiche e l'idoneità dei materiali saranno accertate mediante le seguenti prove di laboratorio:

Inerti

Per strati di collegamento (BINDER):

La miscela degli inerti da adottarsi per lo strato di collegamento dovrà essere assoggettata alle seguenti prove:

- granulometria ricadente nel fuso riportato nel capitolato;
- prova Los Angeles eseguita sulle singole pezzature secondo le norme ASTM C 131 AASHO T 96, con perdita in peso inferiore al 25% (C.N.R. 34-1973);

- indice dei vuoti delle singole pezzature, secondo C.N.R., fascicolo 4/1953 ("Norme per l'accettazione dei pietrischi, dei pietrischetti, delle graniglie, delle sabbie e degli additivi per costruzioni stradali"), inferiore a 0,80;
- coefficiente di imbibizione, secondo C.N.R., fascicolo 4/1953 ("Norme per l'accettazione dei pietrischi, dei pietrischetti, delle graniglie, delle sabbie e degli additivi per costruzioni stradali") inferiore a 0,015 (C.N.R. 137-1992);
- materiale non idrofilo, secondo C.N.R., fascicolo 4/1953 ("Norme per l'accettazione dei pietrischi, dei pietrischetti, delle graniglie, delle sabbie e degli additivi per costruzioni stradali").

Nel caso che si preveda di assoggettare al traffico lo strato di collegamento in periodi umidi od invernali, la perdita in peso per scuotimento sarà limitata allo 0,5%.

Per strati di usura:

La miscela degli inerti da adottarsi per lo strato di collegamento dovrà essere assoggettata alle seguenti prove:

- granulometria ricadente nel fuso riportato al punto 1.3.1.3;
- prova Los Angeles eseguita sulle singole pezzature secondo le norme ASTM C 131 AASHO T 96, con perdita in peso inferiore od uguale al 20% (C.N.R. 34 -1973);
- almeno un 30% in peso del materiale dell'intera miscela deve provenire da frantumazione di rocce che presentino un coefficiente di frantumazione minore di 100 e resistenza a compressione, secondo tutte le giaciture, non inferiore a 140 N/mm², nonché resistenza alla usura minima 0,6;
- indice dei vuoti delle singole pezzature, secondo C.N.R., fascicolo n. 4/1953 ("Norme per l'accettazione dei pietrischi, dei pietrischetti, delle graniglie, delle sabbie e degli additivi per costruzioni stradali"), inferiore a 0,85;
- coefficiente di imbibizione, secondo C.N.R., fascicolo 4/1953 ("Norme per l'accettazione dei pietrischi, dei pietrischetti, delle graniglie, delle sabbie e degli additivi per costruzioni stradali"), inferiore a 0,015 (C.N.R 137-1992);
- materiale non idrofilo, secondo C.N.R., fascicolo 4/1953 ("Norme per l'accettazione dei pietrischi, dei pietrischetti, delle graniglie, delle sabbie e degli additivi per costruzioni stradali"), con limitazione per la perdita in peso allo 0,5%;

Per le banchine di sosta saranno impiegati gli inerti prescritti per gli strati di collegamento e di usura di cui sopra.

In ogni caso i pietrischi e le graniglie dovranno essere costituiti da elementi sani, duri, durevoli, approssimativamente poliedrici, con spigoli vivi, a superficie ruvida, puliti ed esenti da polvere e da materiali estranei.

L'aggregato fino sarà costituito in ogni caso da sabbie naturali o di frantumazione che dovranno soddisfare ai requisiti dell' Art. 5 delle norme C.N.R. fascicolo n. 4 del 1953, ed in particolare:

- equivalente in sabbia, determinato con la prova AASHO T 176, (e secondo la norma C.N.R. B.U. n. 27 del 30-3-1972) non inferiore al 55%;

materiale non idrofilo, secondo C.N.R., fascicolo 4/1953 - ("Norme per l'accettazione dei pietrischi, dei pietrischetti, delle graniglie, delle sabbie e degli additivi per costruzioni stradali") con le limitazioni indicate per l'aggregato grosso. Nel caso non fosse possibile reperire il materiale della pezzatura $2 \div 5$ mm necessario per la prova, la stessa dovrà essere eseguita secondo le modalità della prova Riedel-Weber con concentrazione non inferiore a 6.

Gli additivi minerali (fillers) saranno costituiti da polvere di rocce preferibilmente calcaree o da cemento, calce idrata, calce idraulica, polveri di asfalto e dovranno risultare alla setacciatura per via secca interamente passanti al setaccio n. 30 ASTM e per almeno il 65% al setaccio n. 200 ASTM.

Per lo strato di usura, a richiesta della Direzione dei Lavori, il filler potrà essere costituito da polvere di roccia asfaltica contenente il $6 \div 8\%$ di bitume ad alta percentuale di asfalteni con penetrazione Dow a 25° C inferiore a 150 dmm.

Per fillers diversi da quelli sopra indicati è richiesta la preventiva approvazione della Direzione dei Lavori in base a prove e ricerche di laboratorio.

Legante

Il bitume, *per gli strati di collegamento e di usura*, dovrà essere preferibilmente di penetrazione 60 ÷ 70 salvo diverso avviso della Direzione dei Lavori in relazione alle condizioni locali e stagionali e dovrà rispondere agli stessi requisiti indicati al punto 1.2.1.2 per il conglomerato bituminoso di base.

Studio della miscela in laboratorio

L' Impresa è poi tenuta a presentare con congruo anticipo rispetto all'inizio delle lavorazioni e per ogni cantiere di confezione, la composizione delle miscele che intende adottare, ogni composizione delle miscele che intende adottare.

Ogni composizione proposta dovrà essere corredata da una completa documentazione degli studi effettuati in laboratorio, attraverso i quali l'Impresa ha ricavato la ricetta ottimale.

Il conglomerato dovrà avere i seguenti requisiti:

1) Strato di collegamento (binder):

Esso dovrà comunque essere il minimo che consenta il raggiungimento dei valori di stabilità Marshall e compattezza di seguito riportati.

Il conglomerato bituminoso destinato alla formazione dello strato di collegamento dovrà avere i seguenti requisiti:

- la stabilità Marshall, eseguita a 60°C su provini costipati con 75 colpi di maglio per ogni faccia, dovrà risultare in ogni caso uguale o superiore a 900 kg. Inoltre il valore della rigidezza Marshall, cioè il rapporto tra la stabilità misurata in kg e lo scorrimento misurato in mm, dovrà essere in ogni caso superiore a 300 (C.N.R 30-1973).
- Gli stessi provini per i quali viene determinata la stabilità Marshall dovranno presentare una percentuale di vuoti residui compresa tra 3 ÷ 7%. La prova Marshall eseguita su provini che abbiano subito un periodo di immersione in acqua distillata per 15 giorni, dovrà dare un valore di stabilità non inferiore al 75% di quello precedentemente indicato. Riguardo alle misure di stabilità e rigidezza, sia per i conglomerati bituminosi tipo usura che per quelli tipo binder, valgono le stesse prescrizioni indicate per il conglomerato di base.

2) Strato di usura

Il conglomerato dovrà avere i seguenti requisiti:

a) resistenza meccanica elevatissima, cioè capacità di sopportare senza deformazioni permanenti le sollecitazioni trasmesse dalle ruote dei veicoli sia in fase dinamica che statica, anche sotto le più alte temperature estive, e sufficiente flessibilità per poter seguire sotto gli stessi carichi qualunque assestamento eventuale del sottofondo anche a lunga scadenza.

Il valore della stabilità Marshall (C.N.R. 30-1973) eseguita a 60°C su provini costipati con 75 colpi di maglio per faccia dovrà essere di almeno 10.000 N [1000 Kg].

Inoltre il valore della rigidezza Marshall, cioè il rapporto tra stabilità misurata in Kg e lo scorrimento misurato in mm, dovrà essere in ogni caso superiore a 300.

La percentuale dei vuoti dei provini Marshall, sempre nelle condizioni di impiego prescelte, deve essere compresa fra 3% e 6%.

La prova Marshall eseguita su provini che abbiano subito un periodo di immersione in acqua distillata per 15 giorni, dovrà dare un valore di stabilità non inferiore al 75% di quelli precedentemente indicati;

- b) elevatissima resistenza all'usura superficiale;
- c) sufficiente ruvidezza della superficie tale da non renderla scivolosa;
- d) grande compattezza: il volume dei vuoti residui a rullatura terminata dovrà essere compreso fra 4% e 8%.

Ad un anno dall'apertura al traffico, il volume dei vuoti residui dovrà invece essere compreso fra 3% e 6% e impermeabilità praticamente totale; il coefficiente di permeabilità misurato su uno dei provini Marshall, riferentisi alle condizioni di impiego prescelte, in permeametro a carico costante di 50 cm d'acqua, non dovrà risultare inferiore a 10 - 6 cm/sec.

Sia per i conglomerati bituminosi per strato di collegamento che per strato di usura, nel caso in cui la prova Marshall venga effettuata a titolo di controllo della stabilità del conglomerato prodotto, i relativi provini dovranno essere confezionati con materiale prelevato presso l'impianto di produzione ed immediatamente costipato senza alcun ulteriore riscaldamento.

In tal modo la temperatura di costipamento consentirà anche il controllo delle temperature operative. Inoltre, poiché la prova va effettuata sul materiale passante al crivello da 25 mm, lo stesso dovrà essere vagliato se necessario.

Prove di controllo in fase esecutiva

L'Impresa sarà obbligata a prestarsi in ogni tempo e di norma periodicamente per le forniture di materiali di impiego continuo, alle prove ed esami dei materiali impiegati e da impiegare, ed inviando dei campioni di norma presso un Laboratorio Ufficiale.

I campioni verranno prelevati in contraddittorio.

Degli stessi potrà essere ordinata la conservazione in luogo indicato dalla D.L. previa apposizione dei sigilli e firme del Direttore dei Lavori e dell'Impresa e nei modo più adatti a garantire l'autenticità e la conservazione.

I risultati ottenuti in tali Laboratori saranno i soli riconosciuti validi dalle due parti, ad essi si farà esclusivo riferimento a tutti gli effetti delle presenti Norme Tecniche.

Prove di laboratorio

Valgono le stesse prescrizioni previste nel presente Capitolato.

Prove in sito

Valgono le stesse prescrizioni previste nel presente Capitolato.

Pavimentazione in cubetti di pietra

Le pavimentazioni saranno costituite da cubetti di porfido o di porfiroide o di sienite o diorite o leucitite o di altre rocce idonee, nell'assortimento che verrà di volta in volta indicato dalla Direzione dei Lavori, e posti in opera come specificato in seguito; comunque si farà riferimento alle "Norme per l'accettazione dei cubetti di pietra per pavimentazioni stradali", fascicolo n. 5 C.N.R. Ed. 1954.

Materiali

I materiali costituenti i cubetti saranno sottoposti alle prove riportate nel fascicolo CNR $n^{\circ}5$ "Norme per l'accettazione dei pietrischi, dei pietrischetti, delle graniglie, delle sabbie e degli additivi per le costruzioni stradali" del CNR Fasc. 4-1953).

Quella da impiegare per il riempimento dei giunti dovrà passare per almeno l'80% al setaccio 2 della serie U.N.I..

Tali prove dovranno essere condotte in fase preliminare per la qualificazione dei materiali, in fase esecutiva le medesime saranno condotte con frequenza settimanale e comunque ogni 500 m2 di pavimentazione realizzata.

Posa in opera

La posa in opera dei cubetti dovrà essere effettuata secondo le indicazioni riportate nel presente Capitolato.

Sigillature dei giunti

Il lavoro dovrà essere effettuato secondo le indicazioni riportate nel presente Capitolato.

Il bitume da impiegare dovrà avere penetrazione 30 - 40.

La frequenza dei controlli sarà analoga a quella prevista.

Cordoli

I cordoli saranno realizzati direttamente in opera mediante estrusione da idonea cordolatrice meccanica e potranno essere realizzati in conglomerato sia bituminoso che cementizio, tipo II, con Rck = 30 MPa, previa mano di ancoraggio con emeulsione bituminosa.

I cordoli in calcestruzzo saranno finiti dopo maturazione con una mano di emulsione bituminosa.

I cordoli a protezione della banchina in terra saranno eseguiti contemporaneamente alla pavimentazione dalla macchina finitrice, avranno sezione trapezoidale con basi di 8 e 5 cm ed altezza media di 4 cm, oppure con basi di 10 e 5 cm ed altezza media di 6 cm.

Cordoli realizzati in opera

Per questa tipologia, si dovrà procedere al prelievo di campioni di calcestruzzo con una frequenza e quantità, da soddisfare le indicazioni riportate ai punti 1.5 e seguenti, 1.6 e seguenti della sezione "calcestruzzi" del presente Capitolato.

Cordoli prefabbricati

Ogni partita dovrà essere accompagnata dai corrispondenti certificati attestanti la qualità dei materiali utilizzati per la loro realizzazione, nonché la certificazione attestanti le dimensioni dell'elemento.

Ciascuna partita di 100 elementi prefabbricati non potrà comunque essere posta in opera, fino a quando non saranno noti i risultati positivi della resistenza del conglomerato costituente la partita, mediante il prelievo di 4 provini.

Nel caso che la resistenza sia inferiore a 30 MPa, la partita sarà rifiutata e dovrà essere allontanata dal cantiere.

Tali elementi verranno posati su un letto di calcestruzzo magro, ed attestati, lasciando tra le teste contigue lo spazio di 0.5 cm, che verrà riempito di malta cementizia dosata a 350 kg/m³ di sabbia.

Art. 10 - Opere di difesa –

- Difesa del corpo stradale

Tubazioni, canalette, cunette e cunicoli

Per agevolare lo smaltimento delle acque piovane ed impedire infiltrazioni dannose all'interno del corpo stradale, è prevista, ove necessario, la sistemazione e la costruzione di collettori di scolo, canalette, cunette e cunicoli.

Tubazioni

Tubazioni in P.V.C. rigido

La tubazione sarà costituita da tubi in policloruro di vinile non plastificato con giunti a bicchiere sigillati a collante o con guarnizioni di tenuta a doppio anello asimmetrico in gomma, classe minima SN4, secondo norme UNI EN 1401-1.

Verrà interrata in un cavo di dimensioni previste in progetto sul cui fondo sarà predisposto del materiale fino di allettamento; qualora previsto in progetto verrà rinfrancato con conglomerato del tipo di fondazione con Rck ≥25 MPa.

Su ogni singolo tubo dovrà essere impresso, in modo evidente, leggibile ed indelebile, il nominativo del produttore, il diametro esterno, l'indicazione del tipo e la pressione di esercizio.

La Direzione Lavori potrà prelevare campioni di tubi ed inviarli ad un laboratorio specializzato per essere sottoposti alle prove prescritte dalle norme di unificazione; qualora i risultati non fossero rispondenti a dette norme l'Impresa dovrà provvedere, a sua cura e spese, alla sostituzione dei materiali inidonei.

Pozzetti e chiusini

Dovranno essere in conglomerato cementizio armato e vibrato, ben stagionato, ed avere le seguenti caratteristiche:

- Rck \geq 30 MPa:
- armatura in rete elettrosaldata in fili di acciaio del diametro e maglia adeguati;
- spessore delle pareti dei pozzetti non inferiore a 6,5 cm;
- predisposizione per l'innesto di tubazioni.

I chiusini avranno chiusura battentata e saranno posti su pozzetti e/o canalette, ancorati agli stessi.

Saranno conformi alle norme UNI EN 124 (Dispositivi di coronamento e di chiusura dei pozzetti stradali. Principi di costruzione, prove e marcature).

Sui pozzetti per i quali sia previsto l'eventuale accesso di persone per lavori di manutenzione o similari, il passo d'uomo non dovrà essere inferiore a 600 mm.

Tutti i coperchi, griglie e telai devono portare una marcatura leggibile e durevole, indicante: la norma di riferimento; la classe corrispondente; la sigla e/o nome del fabbricante.

La tipologia e le dimensioni saranno indicate negli elaborati di progetto.

Canalette

Le canalette saranno in elementi prefabbricati in lamiera di acciaio ondulata e zincata, oppure in conglomerato cementizio o fibrocemento.

L'acciaio della lamiera ondulata dovrà essere della qualità di cui alle norme AASHTO M. 167-70 e AASHTO M. 36-70, con contenuto di rame non inferiore allo 0,20% e non superiore allo 0,40 % spessore minimo di 1,5 mm con tolleranza UNI, carico unitario di rottura non minore di 34 kg/mm² e sarà protetto su entrambe le facce da zincatura a bagno caldo in quantità non inferiore a 305 g/m² per faccia.

Nella posa in opera saranno compresi i raccordi, i tiranti, i profilati di raccordo, la bulloneria ed ogni altro onere per l'esecuzione del lavoro.

Canalette ad embrici

Dovranno essere in conglomerato cementizio vibrato, avente $Rck \ge 25$ MPa, in elementi di 50/40 x50x20 cm e spessore 5 cm, secondo i disegni tipo di progetto.

Le canalette dovranno estendersi lungo tutta la scarpata, dalla banchina al fosso di guardia.

Prima della posa in opera l'Impresa avrà cura di effettuare lo scavo di impostazione degli elementi di canaletta, dando allo scavo stesso la forma dell'elemento in modo che il piano di impostazione di ciascun elemento risulti debitamente costipato, per evitare il cedimento dei singoli elementi.

L'elemento al piede della canaletta, quando il fosso di guardia non è rivestito e manca l'ancoraggio, dovrà essere bloccato mediante due tondini in acciaio del diametro 24 mm e lunghezza non inferiore a 80 cm, infissi nel terreno per almeno 60 cm, in modo che sporgano almeno 20 cm.

Ancoraggi analoghi dovranno essere infissi ogni tre elementi di canaletta per impedire il loro slittamento a valle.

In sommità la canaletta dovrà essere raccordata alla pavimentazione mediante apposito invito in conglomerato cementizio gettato in opera o prefabbricato.

La sagomatura dell'invito dovrà essere tale che l'acqua non incontri ostacoli al regolare deflusso.

La formazione di cunetta potrà avvenire con elementi prefabbricati, aventi le caratteristiche prescritte dal progetto, formate con conglomerato cementizio, con armatura idonea alla dimensione degli elementi.

Questa opera comprenderà la regolarizzazione del piano di posa, la fornitura degli elementi prefabbricati, la sigillatura dei giunti con malta cementizia e quanto altro necessario per dare i lavori finiti.

Per tutti i manufatti in elementi prefabbricati di conglomerato cementizio vibrato e/o centrifugato, il controllo della resistenza del conglomerato sarà eseguito a cura e spese dell'Impresa, sotto il controllo della Direzione Lavori, prelevando da ogni partita un elemento dal quale ricavare quattro provini cubici da sottoporre a prove di compressione presso un laboratorio indicato dalla stessa Direzione Lavori.

(Ogni partita composta di 200 elementi per tubazioni, pozzetti e cordonature di 500 elementi per canalette, mantellate, cunette e fossi).

Le operazioni di prelievo e di prova saranno effettuate in contraddittorio redigendo apposito verbale controfirmato dalla Direzione Lavori e dall'Impresa.

Qualora la resistenza risultante dalle prove sia inferiore al valore richiesto, la partita sarà rifiutata e dovrà essere allontanata dal cantiere.

Tassativamente si prescrive che ciascuna partita sottoposta a controllo non potrà essere posta in opera fino a quando non saranno noti i risultati positivi delle prove.

Rivestimento per cunette e fossi di guardia

In elementi prefabbricati in c.a.v.

Dovranno essere in conglomerato cementizio vibrato, avente $Rck \ge 30$ MPa, armato con rete di acciaio a maglie saldate del tipo Fe B 38k, in fili del diametro di 6 mm e del peso non inferiore a 3,00 kg/m².

Gli elementi dovranno avere forma trapezoidale od a L, secondo i disegni tipo di progetto; lo spessore dovrà essere non inferiore a 7 cm e le testate dovranno essere sagomate ad incastro a mezza pialla; i giunti dovranno essere stuccati con malta dosata a 500 kg/m³ di cemento.

Posti in opera su letto di materiale arido perfettamente livellato e costipato avendo cura che in nessun punto restino vuoti che potrebbero compromettere la resistenza della struttura.

In conglomerato cementizio, gettato in opera

Il rivestimento di canali, cunette e fossi di guardia, sarà eseguito con conglomerato cementizio di tipo II con $Rck \ge 30$ MPa, gettato in opera con lo spessore previsto nei disegni di progetto, previa regolarizzazione e costipamento del piano di posa; la lavorazione prevede anche l'uso delle casseforme, la rifinitura superficiale e sagomatura degli spigoli, la formazione di giunti.

In muratura di pietrame

Il rivestimento di cunette e fossi di guardia può essere eseguito in muratura di pietrame e malta dosata a 350 kg/m³ di cemento normale, con lavorazione del paramento a faccia vista e stuccatura dei giunti.

Il rivestimento dello spessore indicato in progetto sarà eseguito previa regolarizzazione e costipamento del piano di posa e predisposizione sullo scavo della malta di allettamento.

Cordonature

Dovranno essere in conglomerato cementizio vibrato, avente $Rck \ge 30$ MPa, in elementi di lunghezza 1,00 m, di forma prismatica e della sezione indicata in progetto.

Gli elementi non dovranno presentare imperfezioni, cavillature, rotture o sbrecciature; dovranno avere superfici in vista regolari e ben rifinite.

Verranno posti in opera su platea in conglomerato cementizio del tipo di fondazione avente Rck \geq 25 MPa, interponendo uno strato di malta dosata a 400 Kg/m³ di cemento che verrà utilizzata anche per la stuccatura degli elementi di cordonatura.

- Muri di sostegno

Potranno essere realizzati in muratura, in calcestruzzo semplice e/o armato, in gabbioni di pietrame o in elementi prefabbricati.

Il comportamento dell'opera di sostegno, intesa come complesso strutture-terreno, deve essere esaminato tenendo conto della successione e delle caratteristiche fisico-meccaniche dei terreni di fondazione e di eventuali materiali di riporto, interessati dall'opera, dalla falda idrica, dai manufatti circostanti, dalle caratteristiche di resistenza e deformabilità dell'opera, dei drenaggi e dispositivi per lo smaltimento delle acque superficiali e sotterranee, nonché delle modalità di esecuzione dell'opera e dell'eventuale rinterro, così come indicato dalle vigenti disposizioni di legge (DM 11.03.1988).

Muri in calcestruzzo

Potranno essere realizzati in calcestruzzo semplice e/o armato.

Per ciò che attiene le caratteristiche dei materiali costituenti l'opera si rimanda alla sezione "Calcestruzzi" del presente Capitolato.

Muri di sostegno

Le strutture di sostegno e contenimento in elementi prefabbricati dovranno essere realizzate secondo gli elaborati esecutivi di progetto, redatti nel rispetto delle norme tecniche vigenti.

La Direzione Lavori, dopo che il Progettista avrà preso visione dei documenti di cui all'art. 9 della legge n° 1086 s.m.i. e avrà verificato la previsione di utilizzazione del manufatto prefabbricato e il suo organico inserimento nel progetto, autorizzerà l'impresa a porre in opera la struttura prefabbricata.

Nella realizzazione dei componenti in conglomerato cementizio vibrato semplice od armato, normale o precompresso, nonché per gli acciai di armatura dovranno essere rispettate le prescrizioni di cui alla sezione Calcestruzzi" del presente Capitolato. I geotessili dovranno rispondere alle caratteristiche di cui ai punti 2.4.7.4 e 2.4.6 della sezione "Movimenti di terra" del presente Capitolato.

Per tutte le strutture di sostegno e contenimento di cui al presente punto, gli oneri di brevetto nonché quelli relativi ai calcoli di progetto dei muri prefabbricati sono a carico dell'Impresa.

Quando previsto in progetto, i muri avranno paramento a faccia vista realizzato con lastre in pietra o porfido, dello spessore non inferiore a 2 cm, disposte secondo le indicazioni di progetto ed inglobate nel getto.

Relativamente agli scavi di fondazione, l'impresa dovrà rispettare rigorosamente i disegni di progetto; eventuali eccedenze dovranno essere colmate con getti di conglomerato cementizio a cura e spese dell'Impresa.

Muri di sostegno in muratura

Per quanto riguarda le opere di sostegno in muratura di pietrame, si dovrà verificare che il materiale impiegato soddisfi i requisiti riportati nella sezione "Murature" del presente Capitolato.

Durante la posa in opera si dovrà verificare che vengano soddisfatte le prescrizioni riportate al punto 3.4.4 del presente Capitolato.

Muri di sostegno in calcestruzzo

Per quanto riguarda i calcestruzzi e gli acciai di armatura valgono le prescrizioni riportate alla sezione "Calcestruzzi" del presente Capitolato.

Muri di sostegno in elementi prefabbricati (c.a.v., c.a.p.)

Per l'accettazione ed i controlli di qualità di questi manufatti, era in particolare di quelli prodotti in serie, valgono le prescrizioni delle Norme Tecniche vigente.

Ad ogni effetto si richiamano qui espressamente gli articoli 6 e 9 della Legge 5/11/1971 n. 1086 s.m.i. relativamente all'obbligo di allegare alla relazione del Direttore dei Lavori copia del certificato d'origine dei manufatti, alle responsabilità assunte dalle Ditte produttrici con il deposito della documentazione di cui ai punti a), b), c), d) del citato decreto nonché per quanto attinente a prelievi di materiali, prove e controlli in fase di produzione.

La Direzione Lavori potrà prescrivere prove sperimentali atte a prevedere il comportamento della struttura da realizzare con tali manufatti, avuto particolare riguardo alla durata nel tempo, alla efficienza dei collegamenti, agli effetti dei fenomeni di ritiro e viscosità e dei carichi alternati o ripetuti.

Sui manufatti saranno effettuati controlli, a cura dell'Impresa, sotto il controllo della Direzione Lavori, sulla resistenza del calcestruzzo, prelevando da ogni lotto almeno un manufatto dal quale ricavare, mediante carotaggio o taglio con sega a disco, quattro provini da sottoporre a verifica della resistenza a compressione.

Qualora la resistenza media a compressione dei quattro provini risultasse inferiore a quella richiesta e comunque non al di sotto del 90% della stessa, la partita sarà declassata del 10% del valore verrà applicata una penale con le medesime modalità previste dall'art.15; qualora risultasse inferiore al 90% della resistenza richiesta, la partita sarà rifiutata e dovrà essere allontanata dal cantiere

In facoltà della Direzione Lavori sottoporre a controllo, a cura dell'Impresa, anche altri manufatti oltre il primo, sui quali verificare anche:

- il rispetto del copriferro;
- eventuali difetti superficiali e di finitura;
- la resistenza a compressione tramite prova pull out con tasselli Fischer.

Muri di sostegno terra rinforzata

Per quanto riguarda questa tipologia di opere, si richiede che i materiali impiegati e le loro modalità di posa in opera, soddisfino i requisiti indicati ai punti 2.4.6 e 2.4.7.4 della Sez. Movimenti di Terra del presente Capitolato.

- Opere in verde

Opere in verde

Le scarpate in rilevato od in scavo ed in genere tutte le aree destinate a verde, dovranno essere rivestite con manto vegetale appena ultimata la loro sistemazione superficiale.

Eventuali erosioni, solcature, buche od altre imperfezioni dovranno essere riprese con terreno agrario, riprofilando le superfici secondo le pendenze di progetto; dovrà essere curata in modo particolare la conservazione ed eventualmente la sistemazione delle banchine dei rilevati.

Tutte le superfici dovranno presentarsi perfettamente regolari, eliminando anche eventuali tracce di pedonamento.

Fornitura e sistemazione di terreno vegetale nelle aiuole

Il terreno vegetale dovrà avere caratteristiche fisiche e chimiche atte a garantire un sicuro attecchimento e sviluppo di colture erbacee, arbustive od arboree.

Dovrà risultare di reazione neutra, sufficientemente dotato di sostanza organica e di elementi nutritivi, di medio impasto, privo di pietre, ciottoli, detriti, radici, erbe infestanti.

Dovrà provenire da scotico di terreno a destinazione agraria, fino alla profondità massima di un metro.

Qualora il prelievo venga fatto da terreni non coltivati, la profondità di prelevamento dovrà essere contenuta allo strato esplorato dalle radici delle specie erbacee presenti ed in ogni caso non dovrà superare il mezzo metro.

L'Impresa prima di effettuare il prelevamento e la fornitura della terra, dovrà darne avviso alla Direzione Lavori, affinché possano venire prelevati, in contraddittorio, i campioni da inviare ad una stazione di chimica agraria riconosciuta, per le analisi di idoneità del materiale secondo i metodi ed i parametri normalizzati di analisi del suolo, pubblicati dalla Società Italiana della Scienza del Suolo - *S.I.S.S.*

Il terreno dovrà essere posto in opera in strati uniformi, ben sminuzzato, spianato e configurato in superficie secondo le indicazioni di progetto.

Rivestimento delle scarpate

Il rivestimento di scarpate in rilevato ed in scavo dovrà essere eseguito mediante semina, rimboschimento o ricopertura con materiali idonei.

Preparazione del terreno

Dopo regolarizzazione ed eventuale riprofilatura, le scarpate in rilevato dovranno essere preparate per il rivestimento mediante una erpicatura poco profonda, eseguita con andamento climatico favorevole e con terreno in tempera (40-50 % della capacità totale per l'acqua).

In questa fase l'impresa dovrà avere cura di portare a compimento tutte quelle opere di regolazione idraulica prevista in progetto, che rappresentano il presidio e la salvaguardia delle scarpate.

Sulle scarpate in scavo, oltre alla regolarizzazione delle superfici, dovranno eventualmente essere predisposte buche in caso di rimboschimento con semenzali o impianti di talee.

Concimazioni

L'Impresa, a sua cura e spese, dovrà effettuare le analisi chimiche dei terreni per poter definire la conciliazione di fondo, che di norma è costituita da concimi minerali somministrati nei seguenti quantitativi:

- concimi fosfatici	titolo medio	18%:	0,80	t/ha;
- concimi azotati	titolo medio	16%:	0,40	t/ha;
- concimi potassici	titolo medio	40%:	0,30	t/ha.

E' facoltà della Direzione Lavori, in relazione ai risultati delle analisi dei terreni ed inoltre per esigenze particolari, variare le proporzioni di cui sopra senza che l'Impresa possa chiedere alcun compenso.

Qualora il terreno risultasse particolarmente povero di sostanza organica, parte dei concimi minerali potrà essere sostituita da terricciati o da letame ben maturo, da spandersi in modo uniforme sul terreno, previa rastrellatura e miscelazione del letame con la terra.

Ogni eventuale sostituzione dovrà essere autorizzata dalla Direzione Lavori.

L'uso dei concimi fisiologicamente alcalini, o fisiologicamente acidi, sarà consentito in terreni a reazione anomala, e ciò in relazione al pH risultante dalle analisi chimiche.

Oltre alla conciliazione di fondo, l'impresa dovrà effettuare anche le opportune concimazioni in copertura, impiegando concimi complessi e tenendo comunque presente che lo sviluppo della vegetazione dovrà avvenire in modo uniforme.

Le modalità delle concimazioni di copertura non vengono precisate, lasciandone l'iniziativa all'Impresa, la quale è anche interessata all'ottenimento della completa copertura del terreno nel più breve tempo possibile ed al conseguente risparmio dei lavori di risarcimento, diserbo, sarchiatura, ripresa di smottamenti ed erosioni, che risulterebbero certamente più onerosi in presenza di non perfetta vegetazione, come pure ad ottenere uno sviluppo uniforme e regolare degli impianti a verde.

I concimi usati per le concimazioni di fondo e di copertura, dovranno essere forniti nelle confezioni originali di fabbrica, risultare a titolo ben definito e, nel caso di concimi complessi, a rapporto azoto-fosforo-potassio precisato.

Da parte della Direzione Lavori sarà consegnato all'Impresa un ordine di servizio nel quale saranno indicate le composizioni delle concimazioni di fondo, in rapporto al pH dei terreni.

Prima di effettuare le concimazioni di fondo, l'impresa è tenuta a darne tempestivo avviso alla Direzione Lavori affinché questa possa disporre eventuali controlli.

Lo spandimento dei concimi dovrà essere effettuato esclusivamente a mano, con impiego di personale pratico e capace, per assicurare uniformità nella distribuzione.

Per le opere di scavo eventualmente rivestite con semenzali o talee, la concimazione potrà essere localizzata.

Semine

Le superfici da rivestire mediante semina, secondo le previsioni di progetto, dovranno essere preparate come descritto al precedente punto; la concimazione come descritta al precedente punto, dovrà essere effettuata in due tempi: all'atto della semina dovranno essere somministrati i concimi fosfatici e potassici; i concimi azotati dovranno essere somministrati a germinazione avvenuta.

Si procederà quindi alla semina di un miscuglio di erbe da prato perenni con l'impiego di 200 kg di seme per ettaro di superficie.

Nella tabella che segue è riportata la composizione di cinque miscugli da impiegare a seconda delle caratteristiche dei terreni e delle particolari condizioni climatiche e/o ambientali.

	Tipo di Miscuglio								
Specie	A	В	C	D	E				
	Kg di seme per ettaro								
Lolium Italicum	-	38	23	50	-				
Lolium Perenne	-	38	23	50	-				
Arrhenatherum	50	-	-	-	33				
Elatius									
Dactylis	5	42	23	20	-				
Glomerata									
Trisetum	12	8	5	-	-				
Plavescens									
Festuca	-	-	47	33	-				
Pratensis									
Festuca Rubra	17	12	15	10	-				
Festuca Ovina	-	-	-	-	10				
Festuca	-	-	-	-	15				
Hetereophilla									
Phleum Pratense	-	12	12	20	-				
Alopecurus	-	20	18	26	-				
Fratensis									
Cynosurus	-	-	-	-	5				
Cristatus									
Poa Pratensis	5	38	30	7	3				
Agrostis Alba	-	10	7	7	-				
Antoxanthum	-	-	-	-	2				
odoratum									
Bromus Erectus	-	-	-	-	25				
Bromus Inermis	66	-	-	-	20				
Trifolium	13	8	10	7	-				
Pratense									
Trifolium	-	12	7	-	-				
Repens									
Trifolium	-	-	-	10	-				
Hibridum									
Medicago	5	-	-	-	10				
Lupolina									
Onobrychis	-	-	-	-	67				
Sativa									
Antillis	17	-	-	-	5				
Vulneraria									
Lotus	10	-	3	10	5				
Cornicolatus									
Sommano Kg	200	200	200	200	200				

Di seguito si riporta lo schema della compatibilità dei miscugli con i vari tipi di terreno:

Tipo di Miscuglio	Caratteristiche dei Terreni
Miscuglio A	Terreni di natura calcarea, piuttosto sciolti, anche con scheletro grossolano;
Miscuglio B	Terreni di medio impasto, tendenti al leggero, fertili;
Miscuglio C	Terreni di medio impasto, argillo-silicei, fertili;
Miscuglio D	Terreni pesanti, argillosi, piuttosto freschi
Miscuglio E	Terreni di medio impasto, in clima caldo e secco

L'Impresa dovrà comunicare alla Direzione Lavori la data della semina, affinché possano essere fatti i prelievi dei campioni di seme da sottoporre a prova e per il controllo delle lavorazioni.

L'Impresa è libera di effettuare le operazioni di semina in qualsiasi stagione, restando a suo carico le eventuali operazioni di risemina nel caso che la germinazione non avvenisse in modo regolare ed uniforme. La semina dovrà essere effettuata a spaglio a più passate per gruppi di semi di volumi e peso quasi uguali, mescolati fra loro e ciascun miscuglio dovrà risultare il più possibile omogeneo.

Lo spandimento del seme dovrà effettuarsi sempre in giornate senza vento.

La ricopertura del seme dovrà essere fatta mediante rastrelli a mano con erpice a sacco.

Dopo la semina il terreno dovrà essere rullato e l'operazione dovrà essere ripetuta a germinazione avvenuta.

Idrosemina

Dopo che le superfici da rivestire saranno state preparate come descritto al precedente punto 1.2.1 del presente Capitolato, l'impresa procederà al rivestimento mediante idrosemina impiegando una speciale attrezzatura in grado di effettuare la proiezione a pressione di una miscela di seme, fertilizzante, collante ed acqua.

Tale attrezzatura, composta essenzialmente da un gruppo meccanico erogante, da un miscelatore-agitatore, da pompe, raccordi, manichette, lance, ecc., dovrà essere in grado di effettuare l'idrosemina in modo uniforme su tutte le superfici da rivestire, qualunque sia l'altezza delle scarpate.

I materiali da impiegare dovranno essere sottoposti alla preventiva approvazione della Direzione Lavori che disporrà le prove ed i controlli ritenuti opportuni.

I miscugli di seme da spandere, aventi le composizioni nei rapporti di cui alla tabella riportata nel precedente punto 1.4 a seconda dei tipi di terreni da rivestire, saranno impiegati nei quantitativi di 200, 400 e 600 kg/ha, in relazione alle prescrizioni che la Direzione Lavori impartirà tratto per tratto, riservandosi inoltre di variare la composizione del miscuglio stesso, fermo restando il quantitativo totale di seme.

Dovrà essere impiegato fertilizzante ternario (PKN) a pronta, media e lenta cessione in ragione di 700 kg/ha.

Per il fissaggio della soluzione al terreno e per la protezione del seme, dovranno essere impiegati in alternativa 1200 kg/ha di fibre di cellulosa, oppure 150 kg/ha di collante sintetico, oppure altri materiali variamente composti che proposti dall'Impresa, dovranno essere preventivamente accettati dalla Direzione Lavori.

Si effettuerà l'eventuale aggiunta di essenze forestali alle miscele di sementi, quando previsto in progetto.

Anche per l'idrosemina l'Impresa è libera di effettuare il lavoro in qualsiasi stagione, restando a suo carico le eventuali operazioni di risemina nel caso che la germinazione non avvenga in modo regolare ed uniforme.

Semina di ginestra (Cytisus scoparius o Spartium junceum)

Sulle superfici preparate e concimate come ai precedenti punti del presente Capitolato l'Impresa procederà alla semina di ginestra eseguita in buche disposte a quinconce, equidistanti 20 cm su file a loro volta distanziate di 20 cm. Il quantitativo di seme da impiegare dovrà essere di 50 kg/ha.

Il seme stesso dovrà essere bagnato prima della semina per favorirne la germinazione; inoltre, se nella zona non vi sono altri ginestreti, dovrà essere mescolato con terriccio proveniente da vecchi ginestreti, in ragione di almeno 500 kg/ha di terriccio, per favorire il diffondersi del microrganismo che ha vita simbiotica con la ginestra e che pertanto è necessario al suo sviluppo.

Rimboschimento con semenzali e impianto di talee

Sulle superfici preparate e concimate, come già indicato nei precedenti punti del presente Capitolato, l'Impresa procederà all'impianto di semenzali o talee, secondo le previsioni di progetto, in ragione di cinque piantine per metro quadrato, disposte a quinconce su file parallele al ciglio strada.

L'Impresa è libera di effettuare l'impianto nel periodo che riterrà più opportuno tenuto conto naturalmente del tempo previsto per la ultimazione dei lavori, restando comunque a suo carico l'onere della sostituzione delle fallanze.

L'impianto potrà essere fatto a mano od a macchina, comunque in modo tale da poter garantire l'attecchimento ed il successivo sviluppo regolare e rapido.

Prima della messa a dimora delle piantine a radice nuda, l'Impresa avrà cura di regolare l'apparato radicale, rinfrescando il taglio delle radici ed eliminando le ramificazioni che si presentassero appassite, perite o eccessivamente sviluppate, impiegando forbici a doppio taglio ben affilate.

Sarà inoltre cura dell'Impresa trattare l'apparato radicale con una miscela di terra argillosa e letame bovino, diluita in acqua.

L'Impresa avrà cura di approntare a piè d'opera il materiale vivaistico perfettamente imballato in maniera da evitare fermentazioni e disseccamenti durante il trasporto.

Le piantine o talee dovranno presentarsi in stato di completa freschezza e con vitalità necessarie al buon attecchimento.

Negli impianti di talee, queste dovranno risultare del diametro minimo di 1, 5 cm, di taglio fresco ed allo stato verde e tale da garantire il ripollonamento

Qualora i materiali non rispondessero alle caratteristiche di cui sopra la Direzione Lavori ne ordinerà l'allontanamento dal cantiere.

Art.11 - Segnaletica orizzontale, verticale e complementare

Generalità

La segnaletica da utilizzare deve soddisfare precise richieste comportamentali e prestazionali in funzione della sua collocazione.

Le attrezzature ed i mezzi di proprietà delle ditte devono possedere idonee caratteristiche e requisiti in linea con le più recenti tecnologie e con ogni norma legislativa e regolamentare avente comunque attinenza.

I mezzi devono inoltre essere tutti omologati dalla Motorizzazione Civile secondo le vigenti Norme del Nuovo Codice della Strada.

Al fine di soddisfare gli adempimenti inerenti il sistema di garanzia della qualità per le imprese autorizzate alla costruzione di segnaletica stradale verticale:

- 1. Le imprese costruttrici di segnaletica stradale verticale devono essere in possesso dei requisiti previsti dall'art.45, comma 8, del decreto legislativo 30 aprile 1992 n.285; devono inoltre adottare un sistema di garanzia della qualità rispondente ai criteri ed alle prescrizioni contenute nelle norme europee internazionali UNI EN 9001/2, e deve essere certificato da un organismo accreditato ai sensi delle norme della serie UNI EN 45000.
- 2. Le imprese di cui sopra devono altresì possedere la certificazione di conformità dei segnali finiti ai sensi delle circolari n.3652 del 17.06.98 e n.1344 del 11.03.99 e successive modifiche.
- 3. L'Ispettorato generale per la circolazione e la sicurezza stradale, avvalendosi, quando ritenuto necessario, del parere del Consiglio Superiore dei Lavori Pubblici, può prescrivere alle imprese interessate adeguamenti o modifiche al sistema di garanzia della qualità adottato anche per uniformare i comportamenti dei vari costruttori di segnali.

L'Impresa dovrà provvedere, senza alcun compenso speciale, ad allestire tutte le opere di difesa, mediante sbarramenti o segnalazioni in corrispondenza dei lavori, di interruzioni o di ingombri sia in sede stradale che fuori, da attuarsi con cavalletti, fanali, nonchè con i segnali prescritti dal Nuovo Codice della Strada approvato con D.L. 30.4.1992 n. 285 e dal relativo Regolamento di esecuzione ed attuazione, approvato con D.P.R. 16.12.1992 n.495, dal D.P.R. n.610 del 16.09.96 e dalla circolare del Ministro LL.PP. n.2900 del 20.11.1993 e s.m.i.

Dovrà pure provvedere ai ripari ed alle armature degli scavi, ed in genere a tutte le opere provvisionali necessarie alla sicurezza degli addetti ai lavori e dei terzi.

In particolare l'Impresa, nell'esecuzione dei lavori, dovrà attenersi a quanto previsto dalla Circolare n.2357 emanata il 16-5-1996 dal Ministero dei LL.PP. (Pubblicata nella G.U. n.125 del 30-5-1996) in materia di fornitura e posa in opera di beni inerenti la sicurezza della circolazione stradale.

Tali provvedimenti devono essere presi sempre a cura ed iniziativa dell'Impresa, ritenendosi impliciti negli ordini di esecuzione dei singoli lavori.

Quando le opere di difesa fossero tali da turbare il regolare svolgimento della viabilità, prima di iniziare i lavori stessi, dovranno essere presi gli opportuni accordi in merito con la Direzione dei Lavori; nei casi di urgenza però, l'Impresa ha espresso obbligo di prendere ogni misura, anche di carattere eccezionale, per salvaguardare la sicurezza pubblica, avvertendo immediatamente di ciò la Direzione dei Lavori.

L'Impresa non avrà mai diritto a compensi addizionali ai prezzi di contratto qualunque siano le condizioni effettive nelle quali debbano eseguirsi i lavori, ne` potrà valere titolo di compenso ed indennizzo per non concessa limitazione o sospensione del traffico di una strada o tratto di strada, restando riservata alla Direzione dei Lavori la facoltà di apprezzamento di tale necessità.

I lavori e le somministrazioni appaltati a misura saranno liquidati in base ai prezzi unitari che risultano dall'elenco allegato al presente Capitolato, con la deduzione del ribasso offerto.

Tali prezzi comprendono:

- A) PER I MATERIALI: ogni spesa per la fornitura, trasporti, cali, perdite, sprechi, ecc., nessuna eccettuata, per darli a pie` d'opera in qualsiasi punto del lavoro anche se fuori strada;
- B) PER GLI OPERAI E MEZZI D'OPERA: ogni spesa per fornire i medesimi di attrezzi ed utensili del mestiere nonche` le quote per assicurazioni sociali;
- C) PER NOLI: ogni spesa per dare a pie` d'opera i macchinari ed i mezzi d'opera pronti per l'uso;
- D) PER I LAVORI: tutte le spese per i mezzi d'opera provvisionali, nessuna esclusa, e quanto altro occorra per dare il lavoro compiuto a perfetta regola d'arte, intendendosi nei prezzi stessi compreso ogni compenso per gli oneri tutti che l'Impresa dovra` sostenere a tale scopo.

I prezzi medesimi diminuiti del ribasso offerto e sotto le condizioni tutte del contratto e del presente Capitolato Speciale, si intendono offerti dall'Impresa, in base a calcoli di sua convenienza, a tutto suo rischio, e quindi invariabili durante tutto il periodo dei lavori e delle forniture ed indipendenti da qualsiasi eventualità.

Ai sensi delle Norme Vigenti per i lavori previsti nel presente contratto non è ammessa la revisione dei prezzi contrattuali e non si applica il primo comma dell'art.1664 del C.C.

Qualità e provenienza dei materiali

I materiali da impiegare nelle forniture e nei lavori compresi nell'appalto dovranno corrispondere, per caratteristiche, a quanto stabilito nelle leggi e regolamenti ufficiali vigenti in materia; in mancanza di particolari prescrizioni dovranno essere delle migliori qualità in commercio in rapporto alla funzione a cui sono destinati.

Nel caso di un utilizzo di tipo sperimentale di materiali migliorativi finalizzati alla sicurezza, questi dovranno comunque risultare conformi ai valori minimi richiesti dalle leggi e/o regolamenti vigenti.

Per la provvista di materiali in genere, si richiamano espressamente le prescrizioni del Capitolato Generale.

In ogni caso i materiali, prima della posa in opera, dovranno essere riconosciuti idonei ed accettati dalla Direzione dei Lavori.

I materiali proverranno da località o fabbriche che l'Impresa riterrà di sua convenienza, purché corrispondano ai requisiti di cui sopra.

Quando la Direzione dei Lavori abbia rifiutato una qualsiasi provvista come non atta all'impiego, l'Impresa dovrà sostituirla con altra che corrisponda alle caratteristiche volute; i materiali rifiutati dovranno essere allontanati immediatamente dal cantiere a cura e spese della stessa Impresa.

Malgrado l'accettazione dei materiali da parte della Direzione dei Lavori, l'Impresa resta totalmente responsabile della riuscita delle opere anche per quanto può dipendere dai materiali stessi.

I materiali da impiegare nei lavori dovranno corrispondere ai requisiti di seguito fissati:

a) - Segnaletica verticale

Tutti i segnali devono essere rispondenti ai tipi, dimensioni e misure prescritte dal Regolamento di esecuzione e di attuazione del Nuovo Codice della Strada approvato con D.P.R. 16 Dicembre 1992 n.495 e successive modifiche di cui al D.P.R. n.610 del 16/9/96 ed in ogni caso alle norme in vigore al momento dell'esecuzione dei lavori.

Dovrà essere attestata la conformità delle proprie attrezzature o di quelle in possesso della ditta che provvederà alla costruzione dei segnali, come prescritto dall'art.194 del D.P.R. 495 del 16-12-1992 e s.m.i.

Le prescrizioni tecniche relative alle pellicole rifrangenti si intendono soddisfatte qualora i materiali forniti dalla ditta produttrice risultino sopportare, con esito positivo, tutte le analisi e prove di laboratorio prescritte nel paragrafo PRESCRIZIONI GENERALI DI ESECUZIONE DELLE PRINCIPALI CATEGORIE DI LAVORO E FORNITURE le certificazioni delle pellicole dovranno essere quindi interamente conformi a quanto previsto nel succitato articolo.

b) - Segnaletica orizzontale

Le segnalazioni orizzontali saranno costituite da strisce longitudinali, strisce trasversali ed altri segni come indicato nel nuovo Codice della Strada ed nel Regolamento di attuazione.

c) - Materiali ferrosi

Saranno esenti da scorie, soffiature, saldature o da qualsiasi altro difetto. Essi dovranno soddisfare i requisiti stabiliti dalle Norme Tecniche Vigenti.

d) - Pellicole

Le pellicole retroriflettenti dovranno possedere i livelli minimi di qualità secondo quanto indicato dal disciplinare tecnico approvato con D.M. 31/3/1995.

e) – Pitture (vernici)

Saranno del tipo rifrangente premiscelato contenente sfere di vetro inserite durante il processo di fabbricazione.

Prove dei materiali

a) - Certificati

Per poter essere autorizzata ad impiegare i vari tipi di materiali (pellicole, semilavorati in ferro ed in alluminio, catadiottri, vernici, ecc.) prescritti dal presente Capitolato Speciale, l'Impresa dovrà esibire prima dell'impiego al Direttore dei Lavori per ogni categoria di lavoro, i relativi certificati di

qualità ed altri certificati rilasciati da un Laboratorio Ufficiale che verranno richiesti dal Direttore stesso.

Tali certificati dovranno contenere i dati relativi alla provenienza ed alla individuazione dei singoli materiali o loro composizione, agli impianti o luoghi di produzione, nonché i dati risultanti dalle prove di laboratorio atte ad accertare i valori caratteristici richiesti per le varie categorie di lavoro o fornitura

b) - Prove dei materiali

In relazione a quanto prescritto nel precedente articolo circa le qualità e le caratteristiche dei materiali, per la loro accettazione l'Impresa è obbligata a prestarsi in ogni tempo alle prove dei materiali impiegati o da impiegare, sottostando a tutte le spese di prelevamento ed invio dei campioni ai Laboratori Ufficiali indicati dalla Stazione appaltante, nonché a tutte le spese per le relative prove.

I campioni saranno prelevati in contraddittorio, anche presso gli stabilimenti di produzione per cui l'Impresa si impegna a garantire l'accesso presso detti stabilimenti ed a fornire l'assistenza necessaria.

Degli stessi potrà essere ordinata la conservazione nell'Ufficio Compartimentale, previa apposizione di sigillo o firma del Direttore dei Lavori e dell'Impresa, nei modi più adatti a garantirne l'autenticità e la conservazione.

Prescrizioni generali di esecuzione delle principali categorie di lavoro e forniture

Per regola generale nell'esecuzione dei lavori e delle forniture l'Impresa dovrà attenersi alle migliori regole dell'arte nonché alle prescrizioni che di seguito vengono date per le principali categorie di lavori.

Per tutte le categorie di lavori e quindi anche per quelle relativamente alle quali non si trovino prescritte speciali norme, sia nel presente Capitolato con annesso elenco prezzi che nel "Manuale Tecnico della Segnaletica Stradale" dell'ANAS redatto dal Gruppo Tecnico per la Sicurezza Stradale, l'Impresa dovrà seguire i migliori procedimenti prescritti dalla tecnica e dalla normativa vigente attenendosi agli ordini che all'uopo impartirà la Direzione Lavori all'atto esecutivo.

Tutte le forniture ed i lavori in genere, principali ed accessori previsti o eventuali, dovranno essere eseguiti a perfetta regola d'arte, con materiali e magisteri appropriati e rispondenti alla specie di lavoro che si richiede ed alla loro destinazione.

In particolare l'Impresa per le forniture dei segnali dovrà attenersi a quanto previsto nel Nuovo Codice della Strada e nel relativo Regolamento di esecuzione e di attuazione.

Segnaletica verticale

Tutti i segnali circolari, triangolari, targhe, frecce, nonché i sostegni ed i relativi basamenti di fondazione dovranno essere costruiti e realizzati sotto la completa responsabilità del Cottimista, in modo tale da resistere alla forza esercitata dal vento alla velocità di almeno 150 Km/ora.

A) PELLICOLE

1) Generalità

Tutte le imprese di segnaletica stradale verticale devono attenersi alle seguenti prescrizioni:

- 1.1 Disciplinare Tecnico sulla modalità di determinazione dei livelli di qualità delle pellicole retroriflettenti impiegate per la costruzione dei segnali stradali approvato con D.M. LL.PP. 31.3.1995.
- 1.2 Certificazioni di qualità rilasciate da organismi accreditati secondo le norme UNI EN 45000, sulla base delle norme europee della serie UNI EN 9000, al produttore delle pellicole retroriflettenti che si intendono utilizzare per la fornitura. Le copie delle certificazioni dovranno essere identificate, a cura del produttore delle pellicole stesse, con gli estremi della ditta partecipante, nonché dalla data di rilascio della copia non antecedente alla data della lettera di invito alla presente gara e da un numero di individuazione.
- 1.3 Le presenti norme contengono le caratteristiche colorimetriche, fotometriche e tecnologiche cui devono rispondere le pellicole retroriflettenti e le relative metodologie di prova alle quali devono essere sottoposte per poter essere utilizzate nella realizzazione della segnaletica stradale. I certificati riguardanti le pellicole dovranno essere conformi esclusivamente al succitato disciplinare tecnico. In particolari situazioni, al fine di implementare le condizioni di sicurezza sulla strada, si potranno richiedere pellicole con caratteristiche tecnologiche superiori ai minimi imposti dal disciplinare D.M. 31.03.95 solo in un regime di sperimentazione autorizzata, così come richiamato al Capitolo 4 del "Manuale Tecnico della Segnaletica Stradale" dell'ANAS redatto dal Gruppo Tecnico per la Sicurezza Stradale.
- 1.4 Certificazione di conformità dei segnali finiti ai sensi delle circolari n. 3652 del 17.06.98 e n. 1344 del 11.03.99 e successive modifiche.

Accertamento dei livelli di qualità

Le caratteristiche delle pellicole retroriflettenti devono essere verificate esclusivamente attraverso prove da eseguire presso uno dei seguenti laboratori:

- Istituto elettrotecnico nazionale Galileo Ferraris Torino;
- Istituto sperimentale delle Ferrovie dello Stato S.p.A. Roma;
- Stazione sperimentale per le industrie degli oli e dei grassi Milano;
- Centro sperimentale ANAS Cesano (Roma);
- Centro superiore ricerche, prove e dispositivi della M.C.T.C. del Ministero dei Trasporti Roma;
- Centro prova autoveicoli Via Marco Ulpio Traiano, 40 Milano;
- Laboratorio prove materiali della Società Autostrade Fiano Romano;
- Istituto di ingegneria dell'Università di Genova;
- Laboratori ufficialmente riconosciuti di altri Stati membri della Comunità Europea;
- Altri laboratori accreditati SINAL per le prove previste dal disciplinare tecnico 31/3/1995.

I produttori delle pellicole retroriflettenti e degli inchiostri idonei alla stampa serigrafica delle stesse, o le persone giuridiche o loro legali rappresentanti, per poter accedere all'accertamento dei livelli di qualità presso il laboratorio prescelto, dovranno allegare alla domanda una dichiarazione autenticata che i campioni consegnati per le prove derivano da materiale di loro ordinaria produzione dovrà accertarsi della esistenza e regolarità di tale dichiarazione e allegarne copia al certificato di conformità delle pellicole retroriflettenti di cui costituiscono parte integrante.

I produttori delle pellicole retroriflettenti devono tenere a disposizione di qualsiasi ente interessato i certificati di conformità delle stesse rilasciati da uno dei laboratori sopra indicati.

Inoltre gli stessi produttori devono rilasciare agli acquirenti una dichiarazione che i prodotti commercializzati corrispondono, per caratteristiche e qualità ai campioni sottoposti a prove.

La certificazione, la cui data di rilascio non deve essere anteriore di oltre cinque anni, deve essere presentata nella sua stesura integrale; in essa tutte le prove devono essere chiaramente e dettagliatamente specificate e deve essere dichiarato che le singole prove sono state eseguite per l'intero ciclo sui medesimi campioni.

Il certificato di conformità dovrà essere riferito, oltre alle pellicole retroriflettenti colorate in origine, alle stesse pellicole serigrafate in tutte le combinazioni dei colori standard previste dal regolamento di esecuzione e di attuazione del Nuovo Codice della Strada.

Il tipo di inchiostro utilizzato dovrà essere inoltre esplicitamente dichiarato.

Dalle certificazioni dovrà risultare la rispondenza alle caratteristiche fotometriche e colorimetriche previste dal presente disciplinare tecnico ed il superamento delle prove tecnologiche in esso elencate.

Il Ministero dei lavori pubblici - Ispettorato Generale per la circolazione e la sicurezza stradale - ha la facoltà di accertare in qualsiasi momento che le pellicole retroriflettenti corrispondano alle certificazioni di conformità presentate dal produttore delle pellicole.

Ove dagli accertamenti effettuati dovessero risultare valori inferiori ai minimi prescritti o prove tecnologiche non superate, il Ministero dei Lavori Pubblici provvederà a darne comunicazione a tutti gli enti interessati.

Definizioni

Pellicola di classe 1

A normale risposta luminosa con durata di 7 anni. La pellicola nuova deve avere un coefficiente areico di intensità luminosa (R') rispondente ai valori minimi prescritti nella tabella II del paragrafo "Coefficiente areico di intensità luminosa" e deve mantenere almeno il 50% dei suddetti valori per il periodo minimo di 7 anni di normale esposizione verticale all'esterno nelle medio condizioni ambientali d'uso.

Dopo tale periodo le coordinate tricromatiche devono ancora rientrare nelle zone colorimetriche di cui alla tabella I del paragrafo "Prescrizioni"

Fa eccezione la pellicola di colore arancio che deve mantenere i requisiti di cui sopra per almeno tre anni.

Valori inferiori devono essere considerati insufficienti ad assicurare la normale percezione di un segnale realizzato con pellicole retroriflettenti di classe 1.

Pellicola di classe 2

Ad alta risposta luminosa con durata di 10 anni. La pellicola deve avere un coefficiente areico di intensità luminosa rispondente ai valori minimi prescritti nella tab. III del paragrafo 4.2.1 e deve mantenere almeno l'80% dei suddetti valori per il periodo minimo di 10 anni di normale esposizione all'esterno nelle medio condizioni ambientali d'uso.

Dopo tale periodo le coordinate tricromatiche devono ancora rientrare nelle zone colorimetriche di cui alla tabella I del paragrafo "Prescrizioni".

Fa eccezione la pellicola di colore arancio che deve mantenere i requisiti di cui sopra per almeno tre anni.

Valori inferiori devono essere considerati insufficienti ad assicurare la normale percezione di un segnale realizzato con pellicole retroriflettenti di classe 2.

Pellicole sperimentali

Come punto "Pellicole di classe 2", aventi caratteristiche prestazionali grandangolari superiori (da utilizzarsi in specifiche situazioni stradali di tipo sperimentale), come previsto nel Capitolo 4 del "Manuale Tecnico della Segnaletica Stradale" dell'ANAS redatto dal Gruppo Tecnico della Sicurezza Stradale ed al paragrafo "Prescrizioni" Tabella IV al presente Capitolato.

Pellicole stampate

Gli inchiostri trasparenti e coprenti utilizzati per la stampa serigrafica delle pellicole retroriflettenti devono presentare la stessa resistenza agli agenti atmosferici delle pellicole.

Le Ditte costruttrici dei segnali dovranno garantire la conformità della stampa serigrafica alle prescrizioni della ditta produttrice della pellicola retroriflettente.

I colori stampati sulle pellicole di classe 1 e di classe 2 devono mantenere le stesse caratteristiche fotometriche e colorimetriche previste rispettivamente ai paragrafi "Coordinate tricomatiche e fattore di luminanza" e "Coefficiente areico di intensità luminosa".

Pellicole di tipo A

Pellicole retroriflettenti termoadesive.

Private del foglio protettivo dell'adesivo, si applicano a caldo e sottovuoto sui supporti per la segnaletica stradale.

Pellicole di tipo B

Pellicole retroriflettenti autoadesive.

Private del foglio protettivo dell'adesivo, si applicano mediante pressione manuale ovvero con attrezzature idonee sui supporti per la segnaletica stradale.

Limite colorimetrico

Linea (retta) nel diagramma di aromaticità (C.I.E. 45.15.200) che separa l'area di cromaticità consentita da quella non consentita.

Fattore di luminanza

Rapporto tra la luminanza della superficie e quella di un diffusore perfetto per riflessione illuminato nelle stesse condizioni (C.I.E. 45.20.200).

Coefficiente areico di intensità luminosa

Quoziente che si ottiene dividendo l'intensità luminosa (I) del materiale retroriflettente nella direzione di osservazione per il prodotto dell'illuminamento (E1) sulla superficie retroriflettente (misurato su un piano ortogonale alla direzione della luce incidente) e della sua area (A).

Unità di misura: cd / lux x m2

ngolo di divergenza

Angolo compreso tra la direzione della luce incidente e la direzione secondo la quale si osserva la pellicola retroriflettente.

Angolo di illuminazione

Angolo compreso tra la direzione della luce incidente e la normale alla pellicola retroriflettente.

Caratteristiche colorimetriche, fotometriche e metologie di misura

Coordinate tricromatiche e fattore di luminanza

Prescrizioni

Le coordinate tricromatiche dei colori da impiegare nel segnalamento stradale devono rientrare nelle zone consentite nel diagramma colorimetrico standard C.I.E. 1931. Il fattore di luminanza non deve essere inferiore al valore minimo prescritto nella seguente tab. I., ad eccezione del colore nero il cui valore costituisce un massimo.

TAB. I - Coordinate colorimetriche valide per le pellicole di classe 1 e 2.

COLORE	de ti m	oordinate elimitano te nel diag etrico C.l inante no eometria	Fattore di			
	1	2	3	4	CL.1 CL.2	
BIANCO X	0,350	0,300	0,285	0.335	>=0,35 >=0,27	
Y	0,360	0,310	0,325	0,375		
GIALLO X	0,545	0,487	0,427	0,465	>=0,27 >=0,16	
Y	0,454	0,423	0,483	0,534		
ROSSO X	0,690	0,595	0,569	0,655	>= 0,03	
Y	0,310	0,315	0,341	0,345		
VERDE X	0,007	0,248	0,177	0,026	>= 0,03	
Y	0,703	0,409	0,362	0,399		
BLU X	0,078	0,150	0,210	0,137	>= 0,01	
Y	0,171	0,220	0,160	0,038		

ARANC. X 0,610	0,535	0,506	0,570 >= 0,15
Y 0,390	0,375	0,404	0,429
MARRON.X 0,455	0,523	0,479	0,588
			0,03<=B<= 0,09
Y 0,397	0,429	0,373	0,394
GRIGIO X 0,350	0,300	0,285	0,335
			0,12<=B<=0,18
Y 0,360	0,310	0,325	0,375
NERO X			<= 0,03
Y			

Metodologia di prova

La misura delle coordinate tricromatiche e del fattore di luminanza deve essere effettuata secondo quanto specificato nella pubblicazione C.I.E. n.15 (E. 1.3.1.) 1971.

Il materiale si intende illuminato con luce diurna così come rappresentata dall'illuminante normalizzato D65 (C.I.E. 45.15.145) ad un angolo di 45 gradi rispetto alla normale alla superficie, mentre l'osservazione va effettuata nella direzione della normale (geometria 45/0).

La misura consiste nel rilievo del fattore di radianza spettrale nel campo 380:780 mm, da effettuare mediante uno spettrofotometro che consenta la geometria prescritta.

La misura delle coordinate tricromatiche e del fattore di luminanza viene effettuata su due provini della pellicola retroriflettente allo stato tal quale (nuova) e su provini sottoposti alle prove di cui ai paragrafi "Resistenza all'invecchiametno accelerato strumentale", "Resistenza alla nebbia salina", "Resistenza al calore", "Resistenza al freddo", "Resistenza ai carburanti".

Coefficiente areico di intensità luminosa

Prescrizioni

Il coefficiente areico di intensità luminosa non deve essere inferiore, per i vari colori ed i vari angoli di divergenza e di illuminazione, ai valori prescritti nella seguente tab. II per le pellicole retroriflettenti di Classe 1, e nella tab. III per le pellicole retroriflettenti di Classe 2.

Colori ottenuti con stampa serigrafica sul colore:

TAB. II - Pellicole di Classe 1 a normale risposta luminosa

	TIB. II Temedie di Classe I a normate insposta immosa										
ANG	OLI	VALORI MINIMI DEL COEFFICIENTE AREICO DI INTENSITÀ									
		LUMINOSA (cd.lux/-1 . m/-2)									
Div.	I11	BIANCO	GIALL	ROSSO	VERDE	BLU	ARANCIO	MARRONE			
			O								
	5°	70	50	14.5	9	4	25	1.0			
12'	30°	30	22	6	3.5	1.7	10	0.3			
	40°	10	7	2	1.5	0.5	2.2	0.1			
	5°	50	35	10	7	2	20	0.69			
20'	30°	24	16	4	3	1	8	0.2			
	40°	9	6	1.8	1.2	0.1	2.2	0.1			
	5°	5	3	1	0.5	0.1	1.2	0.1			
2°	30°	2.5	1.5	0.5	0.3	0.1	0.5	0.1			
	40°	1.5	1.0	0.5	0.2	0.1	0.1	0.1			

5

2.5

1.5

30°

40°

 2°

ANG	OLI	VALORI MINIMI DEL COEFFICIENTE AREICO DI INTENSITÀ							
		LUMINOSA (cd.lux/-1 . m/-2)							
Div.	I11	BIANCO	GIALL	ROSSO	VERDE	BLU	ARANCIO	MARRONE	
			O						
	5°	250	170	45	45	20	100	12	
12'	30°	150	100	25	25	11	60	8.5	
	40°	110	70	15	12	8	29	5	
	5°	180	120	25	21	14	65	8	
20'	30°	100	70	14	12	8	40	5	
	40°	95	60	13	11	7	20	3	

0.5

0.3

0.2

1.0

0.4

0.3

TAB. III - Pellicole di Classe 2 ad alta risposta luminosa

3

1.5

1.0

Per applicazioni di tipo sperimentale, nel caso di utilizzo di pellicole di classe 2 ad alta risposta luminosa grandangolare, devono essere sempre rispettati i valori minimi indicati nella citata tabella III, nonché, come indicato nel Manuale Tecnico della Segnaletica Stradale dell'Ente, devono essere garantiti gli ulteriori valori minimi, ad angolazioni diverse, come di seguito riportati nella TAB. IV.

0.2

0.1

0.1

1.5

1.0

1.0

0.2

0.1

0.1

TAB. IV Pellicola di Classe 2 sperimentale ad alta risposta luminosa grandangolare

ANG. DIVER G.	ANG. ILLUM	BIANC O	GIALL O	ROSSO	VERDE	BLU
1°	5° 30°	80 50	65 40	20 13	10 5	4 2,5
	40°	15	13	5	2	1
	5°	20	16	5	2,5	1
1,5°	30°	10	8	2,5	1	0,5
	40°	5	4,5	1,5	0,5	0,25

Per un corretto uso delle suddette pellicole non si può prescindere da una seria preparazione dei documenti tecnici ed, al riguardo, la ditta aggiudicataria, oltre alle indicazioni menzionate, dovrà rispettare anche le seguenti ulteriori prescrizioni:

- dovrà essere prodotto per le pellicole un rapporto di prova, rilasciato da uno dei Laboratori di cui al D.M. 31/3/1995, attestante che le pellicole retroriflettenti soddisfino i requisiti della tabella sopra menzionata, unitamente alla certificazione di conformità di Classe 2 prevista dallo stesso D.M. 31/3/1995;
- potrà essere richiesto che tali pellicole siano dotate anche di un sistema anticondensa che, oltre alle caratteristiche fotometriche e prestazionali di cui sopra, dovranno essere tali da evitare la formazione di condensa sul segnale durante l'arco delle ventiquattrore. Detta caratteristica è definita da un angolo di contatto delle gocce d'acqua sul segnale stesso non superiore a circa 20° ± 2° e misurata con gli stessi strumenti utilizzati nella misura delle tensioni superficiali "Kruss" con acqua distillata ed alla temperatura di 22°. Tale misura dovrà essere condotta su segnali installati all'aperto in esposizione verticale nelle stesse condizioni di posa in opera. In ogni caso tali caratteristiche dovranno essere attestate nel rapporto di prova di cui sopra

unitamente ad una relazione tecnica, relativa alla valutazione della effettiva proprietà anticondensa, rilasciata da un laboratorio di cui al D.M. 31/3/95.

Infine, un riguardo particolare deve essere rivolto alle fasi di montaggio del supporto del segnale: la necessità di precisione nell'orientazione delle pellicole è infatti sempre correlata alla loro risposta luminosa e facilmente si può determinare la caduta delle caratteristiche prestazionali. Un attenzione specifica deve essere quindi rivolta dal direttore dei lavori alla posa in opera di questi materiali.

Condizioni di prova

La misura del coefficiente areico di intensità luminosa deve essere effettuata secondo le raccomandazioni contenute nella pubblicazione C.I.E. n.54 con illuminante normalizzato A (2856K).

Per la misura del coefficiente areico di intensità luminosa devono essere considerate:

- la misura dell'area della superficie utile del campione d/2;
- la misura dell'illuminamento E/1 in corrispondenza del campione;
- la misura dell'illuminamento Er su rivelatore per ottenere l'intensità luminosa emessa dal campione mediante la relazione:

$I = Er2 \cdot d$

La misura del coefficiente areico di intensità luminosa viene effettuata su due provini della pellicola retroriflettente allo stato tal quale (nuova) e su provini sottoposti alle prove di cui ai paragrafi "Resistenza all'invecchiametno accelerato strumentale", "Resistenza alla nebbia salina", "Resistenza al calore", "Resistenza al freddo", "Resistenza ai carburanti".

Caratteristiche tecnologiche e metodologiche di prova

Condizioni di prova

Le prove devono essere iniziate dopo un condizionamento minimo di 24 ore alla temperatura di 23 +/- 2 gradi C e 50 +/- 5% di umidità relativa.

Le prove di resistenza devono essere effettuate su provini sigillati con un prodotto idoneo.

Spessore, incluso l'adesivo

Prescrizioni

Classe 1 non superiore a mm. 0,25 Classe 2 non superiore a mm. 0,30

Metodologia di prova

Un pezzo di pellicola retroriflettente, delle dimensioni di circa mm. 150x150 dal quale sia stato rimosso il foglio protettivo dell'adesivo, viene applicato su una lamiera di alluminio, il cui spessore è stato precedentemente misurato con un micrometro.

Si effettuano quindi almeno 3 determinazioni in zone differenti dello spessore complessivo della lamiera e della pellicola, utilizzando lo stesso micrometro.

La media delle differenze tra lo spessore complessivo e quello della sola lamiera rappresenta lo spessore medio della pellicola.

Adesività

Prescrizioni

Le pellicole retroriflettenti sia di tipo A sia di tipo B devono aderire perfettamente ai supporti su cui sono applicate e non dare segni di distaccamento per il periodo di vita utile della pellicola.

Metodologia di prova

Su tre pannelli di alluminio di circa mm 60x120 si applica, secondo le indicazioni della ditta produttrice della pellicola, un pezzo della pellicola retroriflettente da sottoporre alla prova di circa mm.20x40.

Dopo aver condizionato i provini secondo quanto indicato al paragrafo "Flessibilità" si rimuovono circa cm 2 lineari di pellicola con l'aiuto di un bisturi o di una lametta.

Si tenta di rimuovere quindi i rimanenti cm 2 lineari di pellicola manualmente, senza l'aiuto di attrezzatura alcuna.

La prova si considera superata positivamente:

- se nonostante l'aiuto di un bisturi o di una lametta non risulta possibile la rimozione dei primi cm 2 lineari di pellicola;
- se la rimozione manuale senza aiuto di attrezzatura provoca la rottura, anche parziale, della pellicola;

Flessibilità

Prescrizioni

Al termine delle prove le pellicole retroriflettenti, sia di classe 1 che di classe 2, non devono mostrare fessurazioni superficiali o profonde.

Metodologie di prova

Su tre pannelli di alluminio delle dimensioni di mm 60x120x0,5 si applica la pellicola retroriflettente da sottoporre alla prova.

Trascorse 48 ore dall'applicazione, ogni pannello in 15 secondi viene impiegato a 9° su un mandrino del diametro di 10 mm per le pellicole di classe 1 e di 20 mm per le pellicole di classe 2; nella piegatura la superficie catadiottrica deve trovarsi all'esterno.

La prova si considera positiva se la pellicola non si rompe nella zona del piegamento per nessuno dei provini.

Resistenza all'invecchiamento accelerato strumentale

Prescrizioni

Al termine della prova di 1.000 ore per la pellicola di Classe 1 e di 2.200 ore per quella di Classe 2 (500 ore per il colore arancio), le pellicole retroriflettenti non devono mostrare alcun difetto (bolle, spellamenti, fessurazioni, distacchi).

Inoltre, le coordinate tricromatiche devono ancora rispondere alle prescrizioni di cui alla tab. I ed il coefficiente areico di intensità luminosa relativo ad un angolo di divergenza di 20° e ad un angolo di illuminazione di 5°, non deve risultare inferiore ai seguenti valori:

- 50% dei valori minimi di cui alla tab. II per le pellicole di classe 1;
- 80% dei valori minimi di cui alla tab. III per le pellicole di classe 2.

Metodologia di prova

Su tre pannelli di alluminio si applica un pezzo di pellicola avente dimensioni di mm 90 x 90.

Eventualmente possono anche essere utilizzate dimensioni diverse a seconda delle caratteristiche costruttive delle attrezzature di prova.

L'area del pannello non deve però essere inferiore a mm 50x50.

Dopo un condizionamento secondo quanto indicato al punto 5.1. i provini vengono sottoposti ad invecchiamento artificiale, in conformità alla norma ASTM G 26 - 83.

Le modalità di prova sono le seguenti:

- metodo di prova "A":

esposizione continua alla luce ed esposizione intermittente a spruzzi di acqua;

- ciclo di prova:

102 minuti di luce seguiti da 18 minuti di luce e spruzzi di acqua;

- sorgente luminosa:

lampada allo xenon da 6500 W;

- filtro interno ed esterno in vetro al borosilicato;
- irragiamento sul campione:

controllato mediante regolazione della potenza della lampada a gradi per la simulazione della distribuzione spettrale relativa di energia della luce diurna lungo tutta la regione attinica;

- temperatura massima in corrispondenza dei provini durante l'esposizione alla sola azione delle radiazioni: 63° +/- 5° (misurata mediante termometro a bulbo nero);
- umidità relativa: 65+/-5%;
- temperatura dell'acqua all'ingresso dell'apparecchio di spruzzo: 16° +/- 5° C.

Al termine dopo aver lavato con acqua deionizzata i provini ed averli asciugati con un panno morbido, se ne osserva lo stato di conservazione e si effettua la verifica delle caratteristiche colorimetriche e fotometriche previste.

Se la prova d'invecchiamento artificiale riguarda pellicole stampate serigraficamente, al termine della prova le zone stampate devono rispettare le prescrizioni fissate al punto "Resistenza all'invecchiamento accelerato strumentale: Prescrizioni" con riferimento ai valori riportati nelle note 2 e 3 alle tabelle II e III.

Resistenza alla nebbia salina

Prescrizioni

Al termine della prova, le pellicole retroriflettenti non devono mostrare alcun difetto (bolle, spellamenti, fessurazioni, distacco), ed in particolare le coordinate tricromatiche devono ancora rispondere alle prescrizioni di cui alla tab. I; il coefficiente areico di intensità luminosa relativo ad un angolo di divergenza di 20° ed un angolo di illuminazione di 5°, non deve risultare inferiore ai seguenti valori:

- 50% dei valori minimi di cui alla tab. Il per le pellicole di classe 1;
- 80% dei valori minimi di cui alla tab. III per le pellicole di classe 2.

Metodologia di prova

Su tre pannelli di alluminio delle dimensioni di mm. 90 x 120 si applica un pezzo della pellicola in esame avente anch'esso dimensioni di mm 90x120.

Dopo un condizionamento secondo quanto indicato al paragrafo "Condizoini di prova", li si sottopone all'azione della nebbia salina, ottenuta da una soluzione acquosa di cloruro di sodio al 5% (5 parti in peso di NaCL in 95 parti di acqua deionizzata), alla temperatura di 35+/-2 gradi C.

La prova è costituita da due cicli di 22 ore, separati da un intervallo di 2 ore a temperatura ambiente, durante il quale i provini si asciugano.

Al termine, dopo aver lavato con acqua deionizzata i provini ed averli asciugati con un panno morbido, se ne osserva lo stato di conservazione.

Trascorse 24 ore, si controlla una seconda volta lo stato di conservazione dei provini e si effettua la verifica delle caratteristiche colorimetriche e fotometriche previste.

Resistenza all'impatto

Prescrizioni

Al termine della prova, le pellicole non devono mostrare segni di rottura o di distacco dal supporto.

Metodologia di prova

Su tre pannelli di alluminio delle dimensioni di mm 150x150x0.5 si applica un pezzo della pellicola in esame avente anch'esso dimensioni di mm 150×150 .

Dopo un condizionamento secondo quanto indicato al paragrafo "Condizioni di prova", i provini devono essere appoggiati sui bordi in modo da lasciare un'area libera di mm 100x100.

Si sottopone il centro dei provini all'impatto di una biglia di acciaio del diametro non superiore a 51 mm e della massa di 540 g in caduta da un'altezza di 22 cm.

Resistenza al calore

Prescrizioni

Al termine della prova, le pellicole non devono mostrare alcun difetto (bolle, delaminazioni, rotture, fessurazioni o distacchi) ed in particolare le coordinate tricromatiche devono ancora rispondere alle prescrizioni di cui alla tabella I; il coefficiente areico di intensità luminosa relativo ad un angolo di divergenza di 20° ed un angolo di illuminazione di 5° non deve risultare inferiore ai seguenti valori:

- 50% dei valori minimi di cui alla tab. II per le pellicole di classe 1;
- 80% dei valori minimi di cui alla tab. III per le pellicole di classe 2.

Metodologia di prova

Su tre pannelli di alluminio, delle dimensioni di mm.15 x 75, si applica un pezzo di pellicola avente anche esso le stesse dimensioni.

Dopo un condizionamento secondo quanto indicato al paragrafo "Condizioni di prova", li si sottopone in forno alla temperatura di 70° +/- 3° C per 24 ore.

Trascorse 2 ore a temperatura ambiente, si osserva lo stato di conservazione dei provini e si effettua la verifica delle caratteristiche colorimetriche e fotometriche previste.

Resistenza al freddo

Prescrizioni

Al termine della prova, le pellicole non devono mostrare alcun difetto (bolle, delaminazioni, rotture, fessurazioni o distacchi) ed in particolare le coordinate tricromatiche devono ancora rispondere alle prescrizioni di cui alla tabella 1; il coefficiente areico di intensità luminosa relativo ad un angolo di divergenza di 20° ed un angolo di illuminazione di 5° non deve risultare inferiore ai seguenti valori:

- 50% dei valori minimi di cui alla tabella II per le pellicole di classe I;
- 80% dei valori minimi di cui alla tabella III per le pellicole di classe 2.

Resistenza ai carburanti

Prescrizioni

Al termine della prova, le pellicole non devono mostrare alcun difetto (bolle, spellamenti, fessurazioni, distacchi) ed in particolare le coordinate tricromatiche devono ancora rispondere alle prescrizioni di cui alla tabella I; il coefficiente areico di intensità luminosa relativo ad un angolo di divergenza di 20° ed un angolo di illuminazione di 5° non deve risultare inferiore ai seguenti valori:

- 50% dei valori minimi di cui alla tabella II per le pellicole di classe 1;
- 80% dei valori minimi di cui alla tabella III per le pellicole di classe 2.

Metodologia di prova

Su due pannelli di alluminio, delle dimensioni di mm 60 x 120, si applica un pezzo della pellicola in esame avente anch'esso dimensioni di mm 60x120.

Dopo un condizionamento secondo quanto indicato al paragrafo "Condizioni di prova", i pannelli vengono immersi in una vaschetta di vetro contenente una miscela costituita per il 70% da isottano e per il 30% da toluene.

La prova ha durata di 1 minuto alla temperatura di 23° +/- 1° C.

Al termine, i provini vengono tolti dal liquido di prova; si lavano con acqua deionizzata, si asciugano con un panno morbido e se ne osserva lo stato di conservazione.

Trascorse 24 ore, si controlla una seconda volta lo stato di conservazione dei provini e si effettua la verifica delle caratteristiche colorimetriche e fotometriche previste.

Resistenza ai saponi ed ai detersivi neutri

Prescrizioni

Al termine della prova, le pellicole non devono mostrare alcun difetto (bolle, delaminazioni, fessurazioni, distacchi).

Metodologie di prova

La prova si esegue come indicato al punto "Resistenza ai carburanti: metodologia di prova" utilizzando però normali saponi e detergenti neutri disponibili in commercio.

Durata della prova:

1 ora alla temperatura di 23° +/- 1° C.

Caratteristiche del contrassegno di individuazione

Prescrizioni

Il contrassegno di individuazione di cui al capitolo "Caratteristiche tecnologiche e metodologiche di prova" deve essere integrato con la struttura interna della pellicola, deve essere inasportabile, non contraffattibile e deve rimanere visibile dopo la prova di resistenza all'invecchiamento accelerato strumentale.

Metodologie di prova

Verifica della inasportabilità

Un campione rappresentativo di pellicola, sia di classe 1 che di classe 2, di dimensioni tali da comprendere almeno un contrassegno, deve essere sottoposto ad abrasione mediante un bisturi oppure un raschietto fino all'asportazione parziale dello strato superficiale.

Dopo la prova, il contrassegno deve ancora permanere nella struttura interna della pellicola.

Verifica della non contraffattibilità e della struttura interna del campione.

Un campione rappresentativo deve essere sezionato in corrispondenza del contrassegno ed esaminato al microscopio ottico.

Il contrassegno deve essere visibile nella struttura interna della pellicola ed integrato in essa.

Verifica della durata

Dopo la prova di resistenza all'invecchiamento accelerato strumentale, di cui al paragrafo "Resistenza all'invecchiamento accelerato strumentale", il contrassegno di individuazione deve rimanere ancora visibile.

Individuazione delle pellicole retroriflettenti

I produttori delle pellicole retroriflettenti, rispondenti ai requisiti di cui al presente disciplinare, dovranno provvedere a renderle riconoscibili a vista mediante un contrassegno contenente il marchio o il logotipo del fabbricante e la dicitura "7 anni" e "10 anni" rispettivamente per le pellicole di classe 1 e di classe 2.

Le diciture possono anche essere espresse nelle altre lingue della CEE.

I fabbricanti dei segnali stradali dovranno curare, e gli Enti acquirenti accertare, che su ogni porzione di pellicola impiegata per realizzare ciascun segnale compaia, almeno una volta, il suddetto contrassegno.

Non potranno pertanto essere utilizzate per la costruzione di segnali stradali pellicole retroriflettenti a normale e ad alta risposta luminosa sprovviste di tale marchio.

Le analisi e prove da eseguire sui materiali retroriflettenti, così come previste dal presente disciplinare, potranno avere luogo solo previo accertamento della presenza del marchio di individuazione e della sussistenza delle sue caratteristiche, secondo quanto stabilito al paragrafo 5.12.

SUPPORTI IN LAMIERA

I segnali saranno costituiti in lamiera di ferro di prima scelta, dello spessore non inferiore a 10/10 di millimetro o in lamiera di alluminio semicrudo puro al 99% dello spessore non inferiore a 25/10 di millimetro (per dischi, triangoli, frecce e targhe di superficie compresa entro i 5 metri quadrati) e dello spessore di 30/10 di millimetri per targhe superiori ai metri quadrati 5 di superficie.

- Rinforzo perimetrale

Ogni segnale dovrà essere rinforzato lungo il suo perimetro da una bordatura di irrigidimento realizzata a scatola delle dimensioni non inferiori a centimetri 1,5;

- Traverse di rinforzo e di collegamento

Qualora le dimensioni dei segnali superino la superficie di metri quadrati 1,50, i cartelli dovranno essere ulteriormente rinforzati con traverse di irrigidimento piegate ad U dello sviluppo di centimetri 15, saldate al cartello nella misura e della larghezza necessaria.

- Traverse intelaiature

Dove necessario sono prescritte per i cartelli di grandi dimensioni traverse in ferro zincate ad U di collegamento tra i vari sostegni.

Tali traverse dovranno essere complete di staffe d attacchi a morsetto per il collegamento, con bulloni in acciaio inox nella quantità necessaria, le dimensioni della sezione della traversa saranno di millimetri 50x23, spessore di millimetri 5, e la lunghezza quella prescritta per i singoli cartelli.

La verniciatura di traverse, staffe, attacchi e bulloni dovrà essere eseguita come per i sostegni.

La zincatura delle traverse dovrà essere conforme alle Norme C.E.I. 7 - fascicolo 239 (1968) sul Controllo della zincatura.

- Congiunzioni diverse pannelli costituenti i cartelli di grandi dimensioni

Qualora i segnali siano costituiti da due o più pannelli, congiunti, questi devono essere perfettamente accostati mediante angolari anticorodal da millimetri 20x20, spessore millimetri 3, opportunamente forati e muniti di un numero di bulloncini in acciaio inox da 1/4 x 15 sufficienti ad ottenere un perfetto assestamento dei lembi dei pannelli.

- Trattamento lamiere (preparazione del grezzo e verniciatura)

La lamiera di ferro dovrà essere prima decapata e quindi fosfotizzata mediante procedimento di bondrizzazione al fine di ottenere sulle superfici della lamiera stessa uno strato di cristalli salini protettivi ancorati per la successiva verniciatura.

La lamiera di alluminio dovrà essere resa anche mediante carteggiatura, sgrassamento a fondo e quindi sottoposta a procedimento di fosfocromatizzazione e ad analogo procedimento di pari affidabilità su tutte le superfici.

Il grezzo dopo aver subito i suddetti processi di preparazione, dovrà essere verniciato a fuoco con opportuni prodotti, secondo il tipo di metallo.

La cottura della vernice sarà eseguita a forno e dovrà raggiungere una temperatura di 140 gradi.

Il resto e la scatolatura dei cartelli verrà rifinito in colore grigio neutro con speciale smalto sintetico.

ATTACCHI

Ad evitare forature tutti i segnali dovranno essere muniti di attacchi standard (per l'adattamento ai sostegni in ferro tubolare diam. mm. 48, 60, 90), ottenuto mediante fissaggio elettrico sul retro di corsoio a "C" della lunghezza minima di 22 centimetri, oppure sarà ricavato (nel caso di cartelli rinforzati e composti di pannelli multipli) direttamente sulle traverse di rinforzo ad U.

Tali attacchi dovranno essere completati da opportune staffe in acciaio zincato corredate di relativa bulloneria pure zincata.

SOSTEGNI

I sostegni per i segnali verticali, portali esclusi, saranno in ferro tubolare diam mm. 60, 90 chiusi alla sommità e, previo decapaggio del grezzo, dovranno essere zincati conformemente alle norme U.N.I. 5101 e ASTM 123, ed eventualmente verniciati con doppia mano di idonea vernice sintetica opaca in tinta neutra della gradazione prescritta dalla Direzione dei Lavori.

Detti sostegni comprese le staffe di ancoraggio del palo di basamento, dovranno pesare rispettivamente per i due diametri sopra citati non meno di 4,2 e 8,00 Kg/m.

Previ parere della Direzione dei Lavori, il diametro inferiore sarà utilizzato per i cartelli triangolari, circolari e quadrati di superficie inferiore a metri quadrati 0,8, mentre il diametro maggiore sarà utilizzato per i cartelli a maggiore superficie.

Il dimensionamento dei sostegni dei grandi cartelli e la loro eventuale controventatura dovrà essere approvato dalla Direzione dei Lavori previo studio e giustificazione tecnica redatta dalla Società cottimista.

SOSTEGNI A PORTALE

I sostegni a portale del tipo a bandiera, a farfalla e a cavalletto saranno realizzati in lamiera di acciaio zincato a caldo con ritti a sezione variabile a perimetro costante di dimensioni calcolate secondo l'impiego e la superficie di targhe da installare.

La traversa sarà costituita da tubolare a sezione rettangolare o quadra e collegata mediante piastra di idonea misura.

La struttura sarà calcolata per resistere alla spinta del vento di 150 km/ora.

I portali saranno ancorati al terreno mediante piastra di base fissata al ritto, da bloccare alla contropiastra in acciaio ad appositi tirafondi annegati nella fondazione in calcestruzzo.

L'altezza minima del piano viabile al bordo inferiore delle targhe è di cm. 550.

La bulloneria sarà in acciaio 8.8 con trattamenti Draconet 320.

FONDAZIONI E POSA IN OPERA

La posa della segnaletica verticale dovrà essere eseguita installando sostegni su apposito basamento delle dimensioni minime di cm. 30x30x50 di altezza in conglomerato cementizio dosato a quintali 2,5 di cemento tipo 325 per metro cubo di miscela intera granulometricamente corretta.

Il basamento dovrà essere opportunamente aumentato per i cartelli di maggiori dimensioni.

Le dimensioni maggiori saranno determinate dal Cottimista tenendo presente che sotto la sua responsabilità gli impianti dovranno resistere ad una velocità massima del vento di Km. 150/ora.

Resta inteso che tale maggiorazione è già compresa nel prezzo della posa in opera.

L'Impresa dovrà curare in modo particolare la sigillatura dei montanti nei rispettivi basamenti prendendo tutte le opportune precauzioni atte ad evitare collegamenti non rigidi, non allineati e pali non perfettamente a piombo.

I segnali dovranno essere installati in modo da essere situati alla giusta distanza e posizione agli effetti della viabilità e della regolarità del traffico seguendo il progetto redatto approvato dalla Direzione dei Lavori.

Il giudizio sulla esattezza di tale posizione è riservata in modo insindacabile dalla Direzione dei Lavori e saranno ed esclusivo carico e spese della Società cottimista ogni operazione relativa allo spostamento dei segnali giudicati non correttamente posati.

Segnaletica complementare

A) DELINEATORI STRADALI

- GENERALITÀ

I segnalimiti o delineatori stradali debbono avere i requisiti stabiliti nell'articolo 172 del Regolamento di attuazione del Nuovo Codice della Strada approvato con D.P.R. 16.12.1992 n. 495 e s.m.i.

Tali dispositivi rifrangenti dovranno risultare approvati dal Ministero dei LL.PP.

I segnalimiti devono, inoltre, portare impresso in vicinanza del dispositivo rifrangente, l'anno di fabbricazione ed il marchio di fabbrica o il nominativo della Ditta.

Nel caso in cui sia compresa nell'appalto anche la posa in opera, i segnalimiti devono essere distanziati, secondo quanto indicato al richiamato art. 172 del regolamento.

I segnalimiti devono inoltre rispondere ai seguenti requisiti:

- manutenzione facile;
- trasporto agevole;
- resistenza agli agenti atmosferici;
- non rappresentare un pericolo per gli utenti della strada.

Per quanto riguarda i dispositivi rifrangenti, si precisa che essi devono soddisfare ai seguenti requisiti:

- caratteristiche ottiche stabili nel tempo;
- colore definito da norme unificate sulla base di coordinate tricromatiche:
- fissaggio stabile dell'inserto al supporto.

1) Forma - Dimensioni - Colori

Indipendentemente dalla natura del materiale con cui sono prodotti, i segnalimiti da collocare ai margini delle strade statali ed autostrade dovranno essere conformi alle disposizioni di cui all'artt. 172 e 173 del Regolamento di attuazione 16.12.92 n.495 e successive modifiche.

Nel caso in cui il delineatore debba essere posto in opera, la sommità del medesimo dovrà risultare a cm. 70 al di sopra della quota della banchina stradale.

Allo scopo di realizzare la flessibilità del delineatore, potranno essere adottati, nella sezione orizzontale in corrispondenza del piano della banchina accorgimenti particolari consistenti o nella creazione di sezioni di minore resistenza ovvero nell'inserimento di particolari materiali nel corpo del delineatore.

In attesa della pubblicazione del progetto di normativa europea pr EN 12899-3 si applicano i requisiti che seguono.

Per i segnalimiti prodotti con materiali di natura plastica, si prescrive che le pareti del manufatto abbiano in ogni punto spessore inferiore a mm. 2 (due), che il segnalimite sia costituito da polimero della migliore qualità e precisamente da polietilene ad alta intensità, di colore bianco, con un tenore di biossido di titanio (TiO2) almeno del 2%.

I parametri caratteristici del polimero (polietilene al alta densità), dovranno presentare valori compresi nei limiti seguenti:

- Indice di fluidità (Melt Index): dovrà essere compreso tra 0.2 + 0.4;

- Densità: 0,95;
- Carico di rottura (prima e dopo l'esposizione continua all'azione dei raggi ultravioletti in un apparecchio "weather o meter" secondo le norme ASTM 4527 e D 1499 59T):
- prima: 220 Kg./cmq.
- dopo : deve raggiungere almeno l'85% del valore iniziale;
- Allungamento a rottura (prima e dopo l'esposizione continua all'azione dei raggi ultravioletti come sopra):
- prima: 35%
- dopo : deve raggiungere almeno l'85% del valore della lunghezza iniziale;
- Resistenza all'urto del polimero pigmentato:
- prima dell'esposizione ai raggi ultravioletti, la resistenza dell'urto, secondo le norme ISO ASTM 256-56T deve raggiungere un minimo di 9 Kg./cmq.; dopo l'irradiazione, la resistenza deve raggiungere almeno l'80% del valore ottenuto prima dell'esposizione.

I dispositivi riflettenti impiegati nei segnalimiti dovranno essere prodotti con metacrilato di metile od analoghi materiali ed aventi le caratteristiche indicate dall'art.172 del Regolamento.

- 2) Prove ed accertamenti
- a) Resistenza alla flessione

La prova consisterà nel sottoporre il segnalimite, tenuto incastrato in corrispondenza della sezione posta a cm. 70 dalla sommità, in una flessione del piano verticale di simmetria (normale dell'asse stradale), fino ad ottenere una deviazione di 45 gradi rispetto alla posizione normale, mantenendo per 5' tale deviazione.

La temperatura di prova non dovrà essere superiore ai 25° C.

Il risultato della prova sarà considerato favorevole se, eliminato il carico che ha provocato la flessione, il segnalimite assumerà la sua posizione originaria senza alcuna traccia di deformazione residua.

Saranno considerati accettabili i segnalimiti che, assoggettati alla prova meccanica di cui al presente paragrafo, ma alla temperatura di $(5^{\circ} + 1^{\circ})$ presenteranno una deviazione residua non superiore a 7° .

b) Resistenza agli agenti chimici (A.S.T.M. D.543):

La prova sarà effettuata secondo la procedura descritta nella norma A.S.T.M. D.543.

Le soluzioni aggressive impiegate per l'esecuzione della prova sono:

- Cloruro di sodio al 20%;
- Cloruro di calcio al 20%:
- Idrossido di ammonio al 10%;
- Acido cloridrico al 10%;
- Acido solforico al 10%;
- Olio minerale;
- Benzina.

- c) Caratteristiche meccaniche e fisiche del materiale impiegato:
- 1) Titolo del pigmento Ti02;
- 2) Indice di fluidità del polimero pigmentato;
- 3) Densità del polimero pigmentato;
- 4) Carico di rotture del polimero pigmentato;
- 5) Allungamento a rottura del polimero pigmentato;
- 6) Resistenza all'urto del polimero pigmentato.
- d) Caratteristiche dei dispositivi riflettenti:

Il catadiottro immerso per cinque minuti in acqua calda a $+80^{\circ}$ e immediatamente dopo, per altri cinque minuti, in acqua fredda a $+10^{\circ}$, dovrà risultare integro, a perfetta tenuta stagna da controllare mediante pesature di precisione.

e) Fissaggio:

I catadiottri devono essere fissati al delineatore con dispositivi e mezzi idonei ad impedirne l'asportazione.

f) Omologazione:

I catadiottri impiegati dovranno essere omologati presso il Ministero dei LL.PP. e presentare impresso il relativo numero di omologazione in conformità all'articolo 192 del Regolamento di attuazione del Nuovo Codice della Strada.

B) CONI H = 32,7 CM.

- GENERALITÀ

I coni flessibili devono essere usati secondo le disposizioni previste per l'art.34 del regolamento di esecuzione e di attuazione del nuovo codice della Strada.

Coerentemente con quanto previsto all'art.79 dello stesso Regolamento, i coni devono essere visibili di giorno come di notte.

A tale scopo essi devono essere riflettorizzati con fasce di colore bianco (oppure completamente riflettorizzati con fasce alterne bianche e rosse). La pellicola rifrangente deve essere esclusivamente di classe 2.

I coni sono realizzati in gomma di buona qualità e devono avere il corpo di colore rosso.

Sulla base di ogni cono è chiaramente impresso in maniera indelebile il nome del costruttore.

- FORMA

L'altezza dei coni deve essere di norma di 32,7 +/- 2 cm con la stessa configurazione riportata alla figura II 396 del Regolamento di esecuzione e di attuazione del Nuovo Codice della Strada (preferibile base poligonale).

Devono avere una forma idonea tale da garantire, se impilati, di incastrarsi l'uno con l'altro senza danneggiare il materiale retroriflettente.

I coni devono avere un'adeguata base di appoggio per garantire la necessaria stabilità durante le normali condizioni d'uso.

- PESO

Il peso dei coni, comprensivi della base, deve essere superiore a 3,0 kg.

- CARATTERISTICHE COLORIMETRICHE CORPO DEL CONO SUPERFICIE NON RETRORIFLETTENTE

Quando sottoposto a prove secondo le procedure definite nella pubblicazione C.I.E. n.51.2 (1986), utilizzando l'illuminante normalizzato D65, geometria 45/0, il colore rosso del corpo deve essere conforme alla tabella 1 come appropriato.

TABELLA 1

COLORE	1		2		3		4		FATTORE
									DI
									LUMIN.B
	X	Y	X	Y	X	Y	X	Y	
ROSSO	0,690	0,310	0,575	0,316	0,521	0,371	0,610	0,390	>= 0,11

SUPERFICI RETRORIFLETTENTI

Quando sottoposti a prove secondo le procedure definite nella pubblicazione C.I.E. n.15.2 (1986), utilizzando l'illuminante normalizzato D65, geometria 45/0, i colori delle pellicole retroriflettenti, bianco oppure rosso serigrafato, devono essere conformi ai valori previsti nella tabella 1 del disciplinare tecnico del Ministero dei LL.PP. pubblicato con D.M. 31 marzo 1995.

- CARATTERISTICHE FOTOMETRICHE

Secondo quanto previsto all'art.36 del Regolamento, le fasce di colore bianco (oppure il materiale retroriflettente a fasce alterne bianche e rosse) devono avere un coefficiente areico di intensità luminosa R' iniziale non inferiore ai valori minimi prescritti per i vari angoli di divergenza e di illuminazione nella tabella III del disciplinare tecnico del Ministero dei LL.PP. pubblicato con D.M. 31 marzo 1995.

Le misure sono eseguite in conformità alle procedure definite nella pubblicazione C.I.E. n.54 (1982), utilizzando l'illuminante normalizzato A.

- CARATTERISTICHE COMPORTAMENTALI DEL MATERIALE RETRORIFLETTENTE

Il materiale retroriflettente che costituisce le fasce di colore bianco (oppure le fasce alternate bianche e rosse) supera le prove di resistenza previste ai paragrafi 4.4, 4.5, 4.6, 4.8, 4.9, 4.10 e 4.11 del disciplinare tecnico del Ministero dei Lavori Pubblici pubblicato con D.M. 31 marzo 1995. L'adesione del materiale retroriflettente alla superficie del cono deve essere adeguatamente dimostrata. In particolare, dopo aver praticato un taglio verticale per tutta l'altezza della pellicola, quest'ultima non deve subire un distacco dalla base del cono superiore a 1 mm.

- CARATTERISTICHE COMPORTAMENTALI DEL CONO FINITO

I coni flessibili devono essere stabili, resistenti alle cadute, resistenti agli impatti a basse temperature.

In attesa di prove specifiche definite, valgono le prove descritte ai paragrafi 7.4, 7.5, 7.6 del progetto di norma europea "Attrezzature stradali - Segnali stradali portatili - coni e cilindri", riferimento pr EN 13422 ottobre 1998 e successive modifiche.

In particolare sono richiesti i seguenti requisiti:

- a) Stabilità (rif. 7.4 del progetto di norma): dopo aver applicato una forza orizzontale pari a 6 N, il cono non deve subire alcun ribaltamento.
- b) Resistenza all'impatto a basse temperature (rif. 7.5 del progetto di norma): raffreddato ad una temperatura di -25° +/- 2° C e colpito da una sfera di 0,9 +/- 0,045 kg., il cono non deve subire alcun danneggiamento tipo fessurazioni della gomma e della pellicola. Dopo la prova il cono deve ritornare nella sua forma originale.
- c) Resistenza alla caduta (rif. 6.7 del progetto di norma):

Il cono, raffreddato a -18° +/- 2° C e lasciato cadere liberamente da un'altezza di 1500 +/- 50 mm., non deve subire alcuna rottura o deformazione permanente sia nel cono che negli inserti retroriflettenti.

L'impresa, ai sensi del D.Leg.vo 358/92 e del DPR 576/94, deve presentare all'Amministrazione, tutta la certificazione inerente il superamento dei requisiti sopra elencati.

C) CONI H = 50 CM.

- GENERALITÀ

I coni flessibili devono essere usati secondo le disposizioni previste per l'art.34 del regolamento di esecuzione e di attuazione del nuovo codice della Strada.

Coerentemente con quanto previsto all'art.79 dello stesso Regolamento, i coni devono essere visibili di giorno come di notte.

A tale scopo essi devono essere riflettorizzati con fasce di colore bianco oppure completamente riflettorizzati con fasce alterne bianche e rosse.

I coni dovranno essere realizzati in gomma di buona qualità e dovranno avere il corpo di colore rosso.

Sulla base di ogni cono sarà chiaramente impresso in maniera indelebile il nome del costruttore ed il relativo numero di autorizzazione alla costruzione dei segnali rilasciato dal Ministero dei Lavori Pubblici.

- FORMA

L'altezza dei coni dovrà essere di norma di 50 +/- 2 cm. con la stessa configurazione riportata alla figura II 396 del Regolamento di esecuzione e di attuazione del Nuovo Codice della Strada (preferibile base poligonale).

Dovranno avere una forma idonea tale da garantire, se impilati, di incastrarsi l'uno con l'altro senza danneggiare il materiale retroriflettente.

I coni devono avere un'adeguata base di appoggio per garantire la necessaria stabilità durante le normali condizioni d'uso.

- PESO

Il peso dei coni, comprensivi della base, dovrà essere superiore a 2,0 kg. Per condizioni d'uso particolari dovrà essere previsto un peso totale superiore a 3,0 kg.

- CARATTERISTICHE COLORIMETRICHE CORPO DEL CONO SUPERFICIE NON RIFLETTENTE

Quando sottoposto a prove secondo le procedure definite nella pubblicazione C.I.E. n.51.2 (1986), utilizzando l'illuminante normalizzato D65, geometria 45/0, il colore rosso del corpo dovrà essere conforme alla tabella 1 come appropriato.

TABELLA 1

COLORE	1		2		3		4		FATTORE
									DI
									LUMIN.B
	X	Y	X	Y	X	Y	X	Y	
ROSSO	0,690	0,310	0,575	0,316	0,521	0,371	0,610	0,390	>= 0,11

SUPERFICI RETRORIFLETTENTI

Quando sottoposti a prove secondo le procedure definite nella pubblicazione C.I.E. n.15.2 (1986), utilizzando l'illuminante normalizzato D65, geometria 45/0, i colori delle pellicole retroriflettenti, bianco oppure rosso serigrafato, dovranno essere conformi ai valori previsti nella tabella 1 del disciplinare tecnico del Ministero dei LL.PP. pubblicato con D.M. 31 marzo 1995.

- CARATTERISTICHE FOTOMETRICHE

Secondo quanto previsto all'art.36 del Regolamento, le fasce di colore bianco (oppure il materiale retroriflettente a fasce alterne bianche e rosse) dovranno avere un coefficiente areico di intensità luminosa R' iniziale non inferiore ai valori minimi prescritti per i vari angoli di divergenza e di illuminazione nella tabella III del disciplinare tecnico del Ministero dei LL.PP. pubblicato con D.M. 31 marzo 1995.

Le misure saranno eseguite in conformità alle procedure definite nella pubblicazione C.I.E. n.54 (1982), utilizzando l'illuminante normalizzato A.

- CARATTERISTICHE COMPORTAMENTALI DEL MATERIALE RETRORIFLETTENTE

Il materiale retroriflettente che costituisce le fasce di colore bianco (oppure le fasce alternate bianche e rosse) dovrà superare le prove di resistenza previste ai paragrafi 4.4, 4.5, 4.6, 4.8, 4.9, 4.10 e 4.11 del disciplinare tecnico del Ministero dei Lavori Pubblici pubblicato con D.M. 31 marzo 1995.

L'adesione del materiale retroriflettente alla superficie del cono dovrà essere adeguatamente dimostrata. In particolare, dopo aver praticato un taglio verticale per tutta l'altezza della pellicola, quest'ultima non dovrà subire un distacco dalla base del cono superiore a 1 mm.

- CARATTERISTICHE COMPORTAMENTALI DEL CONO FINITO

I coni flessibili dovranno essere stabili, resistenti alle cadute, resistenti agli impatti a basse temperature.

In attesa di prove specifiche definite, valgono le prove descritte ai paragrafi 7.4, 7.5, 7.6 del progetto di norma europea "Attrezzature stradali - Segnali stradali portatili - coni e cilindri", riferimento pr EN 13422 ottobre 1998 e successive modifiche.

In particolare sono richiesti i seguenti requisiti:

- a) Stabilità (rif. 7.4 del progetto di norma): dopo aver applicato una forza orizzontale pari a 6 N, il cono non dovrà subire alcun ribaltamento.
- b) Resistenza all'impatto a basse temperature (rif. 7.5 del progetto di norma): raffreddato ad una temperatura di -25° +/- 2° C e colpito da una sfera di 0,9 +/- 0,045 kg., il cono non dovrà subire alcun danneggiamento tipo fessurazioni della gomma e della pellicola. Dopo la prova il cono dovrà ritornare nella sua forma originale.
- c) Resistenza alla caduta (rif. 6.7 del progetto di norma): il cono, raffreddato a -18° +/- 2° C e lasciato cadere liberamente da un'altezza di 1500 +/- 50 mm., non deve subire alcuna rottura o deformazione permanente sia nel cono che negli inserti retroriflettenti.

L'impresa, ai sensi del D.leg. 358/92 e del DPR 576/94, devono presentare all'Amministrazione, tutta la certificazione inerente il superamento dei requisiti sopra elencati.

D) OCCHI DI GATTO

Dispositivi retroriflettenti integrativi dei segnali orizzontali in policarbonato o speciali resine dotati di corpo e parte rifrangente dello stesso colore della segnaletica orizzontale di cui costituiscono rafforzamento.

Ai sensi dell'art. 153 del Regolamento d'esecuzione e di attuazione del Nuovo Codice della Strada, approvato con D.P.R. 495 del 16.12.92 e successive modifiche ed integrazioni, i dispositivi retroriflettenti integrativi quali gli occhi di gatto devono essere approvati dal Ministero dei lavori Pubblici.

Copia di tale approvazione, unitamente agli altri certificati richiesti, dovrà essere presentata dall'Impresa concorrente.

Dimensioni del corpo: come previste dal Regolamento art. 153.

Il suddetto dispositivo dovrà essere fissato al fondo stradale con idoneo adesivo secondo le prescrizioni della ditta produttrice.

Le caratteristiche tecniche dei dispositivi denominati "occhi di gatto" dovranno rispondere alla Norma Europea EN 1463-1; in particolare:

- a) per uso permanente (EN1463-1)
- classificazione: tipo 3A
- proprietà fotometriche: classe PRP1, i valori fotometrici non dovranno essere inferiori a quelli previsti nella tabella 4 (tipo 3) per il colore bianco;
- colore: classe NCR1, i valori dovranno essere conformi a quelli previsti nella tabella 9.
- b) per uso temporaneo (EN1463-1)
- classificazione: tipo 3A
- proprietà fotometriche: classe PRT1, i valori fotometrici non dovranno essere inferiori a quelli previsti nella tabella 6 (tipo 3) per il colore giallo e non inferiori a quelli previsti nella tabella 5 per gli altri colorati
- colore:
- a) colore dell'inserto rifrangente => classe NCR1 e i valori dovranno essere conformi a quelli previsti nella tabella 9;
- b) colore del corpo => classe DCR1 e i valori dovranno essere conformi a quelli previsti nella tabella 10.

Oltre ai certificati relativi alle proprietà fotometriche e al colore, comprovanti la rispondenza ai valori previsti nella norma EN1463-1, l'impresa deve presentare:

- omologazione del Ministero LL. PP. per i tipi rispondenti alla classificazione sopra descritta;
- certificato relativo alle prove di impatto;
- certificato relativo alle prove di penetrazione dell'acqua;
- certificato relativo alla resistenza alla temperatura;
- certificato relativo alla resistenza alla compressione.

I certificati di cui al presente articolo, qualora presentati in copia, dovranno essere identificati da parte della Ditta produttrice con una vidimazione rilasciata in originale alla Ditta concorrente sulla quale dovranno essere riportati gli estremi della Ditta stessa.

Tale vidimazione dovrà essere compiuta in data non anteriore a 30 giorni dalla data di scadenza di presentazione dell'offerta e recare un numero di individuazione.

La presentazione di documenti incompleti o insufficienti non rispondenti alle norme vigenti e a quelle particolari del presente capitolato, comporterà l'esclusione dall'appalto.

La fornitura da parte dell'impresa di materiali diversi da quelli dichiarati, costituirà motivo di immediato annullamento del contratto con riserva di adottare ogni altro provvedimento più opportuno a tutela dell'interesse dell'Amministrazione.

E) DISPOSITIVO PER LA RIFLETTORIZZAZIONE DEGLI ALBERI

- GENERALITÀ

Il dispositivo in oggetto consente di riflettorizzare l'ingombro degli alberi presenti a bordo strada in maniera permanente.

Per le strade a doppio senso di marcia, l'eventuale applicazione bifacciale del dispositivo riflettente deve prevedere i colori ROSSO e BIANCO, ovvero GIALLO sulle strade con senso unico di marcia.

Il sistema di fissaggio al fusto, realizzato esclusivamente tramite cinghie elastiche adattabili a misura, permetterà una totale compatibilità ambientale non interferendo con la crescita della pianta ovvero arrecando alcun tipo di danneggiamento.

Il dispositivo combina differenti mescole di gomma per assicurare la conformabilità del dispositivo e la elasticità necessaria al sistema di fissaggio.

Il supporto di forma rettangolare sarà dotato di fori in corrispondenza degli spigoli.

Il bloccaggio della cinghia elastico sarà garantito da apposite fascette in materiale plastico.

- CARATTERISTICHE TECNICHE E DIMENSIONALI DEI COMPONENTI

- Il supporto, con dimensioni 200×250 mm., dovrà essere realizzato in gomma naturale di spessore 3 mm. Con durezza minima pari a 70 shore.
- La cinghia elastica in gomma dovrà avere un diametro di 6 mm., dovrà essere realizzata in gomma a struttura cellulare chiusa, che dovrà resistere a temperature da -30 gradi C a +85 gradi C con accorciamento/allungamento lineare inferiore al 5% dopo 22 ore ad una temperatura di 70 gradi.
- Le fascette per il bloccaggio dovranno essere di tipo per esterno.
- L'inserto rifrangente montato sul supporto in gomma, di dimensioni 148 x 198 mm. sarà in classe 2 di cui al punto "pellicole sperimentali".

Per ottenere un'efficienza ottimale dalla particolare applicazione del suddetto dispositivo, la pellicola retroriflettente dovrà possedere una grande angolarità superiore, come riportato nel Capitolo 4 del "Manuale Tecnico della Segnaletica Stradale" dell'ANAS redatto dal Gruppo Tecnico della Sicurezza Stradale e nella TAB. IV paragrafo "Prescrizioni" delle presenti norme tecniche.

La suddetta pellicola retroriflettente, oltre a rispondere alle specifiche riportate nel capitolato tecnico, dovrà avere una resistenza all'abrasione ASTM 4060-84 con mole abrasiva e carico applicato di 500 g. <= 3,2 mg ed una resistenza ad imbutitura dinamica (urto) ASTM D 2794 - 93 >= 85 Kg/cm.

Segnaletica orizzontale in vernice

- GENERALITÀ

La segnaletica orizzontale in vernice sarà eseguita con apposita attrezzatura traccialinee a spruzzo semovente.

I bordi delle striscie, linee arresto, zebrature scritte, ecc., dovranno risultare nitidi e la superficie verniciata uniformemente coperta.

Le striscie orizzontali dovranno risultare perfettamente allineate con l'asse della strada.

1) Prove ed accertamenti

Le vernici che saranno adoperate per l'esecuzione della segnaletica orizzontale dovranno essere accompagnate da una dichiarazione delle caratteristiche dalla quale dovranno risultare, peso per litro a 25° C, il tempo di essicazione, viscosità, percentuale di pigmento, percentuale di non volatile, peso di cromato di piombo o del biossido di titanio per altro di pittura gialla o bianca rispettivamente percentuale in peso delle sfere e percentuale di sfere rotonde, tipo di solvente da usarsi per diluire e quantità raccomandata l'applicazione della pittura e ogni altro requisito tecnico descritto nei precedenti articoli.

Le pitture acquistate dovranno soddisfare i requisiti esplicitamente elencati nel successivo paragrafo 2 ed essere conformi alla dichiarazione delle caratteristiche fornite al venditore entro le tolleranze appresso indicate.

Qualora la vernice non risulta conforme ad una o più caratteristiche richieste, l'Amministrazione, a suo insindacabile giudizio, potrà imporre al fornitore la sostituzione a sua cura e spese, comprese quelle di maneggiamento e trasporto con altra vernice idonea.

I contenitori prescelti per la prova dovranno risultare ermeticamente chiusi e dovranno essere etichettati con i dati necessari a identificare univocamente il campione.

Sull'etichetta si dovranno annotare i seguenti dati.

Descrizione:

Ditta produttrice;

Data di fabbricazione:

Numerosità e caratteristiche della partita;

Contrassegno;

Luogo del prelievo;

Data del prelievo;

Firme degli incaricati.

Per le varie caratteristiche sono ammesse le seguenti tolleranze massime, superanti le quali verrà rifiutata la vernice:

- viscosità: un intervallo di 5 unità Krebs rispetto al valore dichiarato dal venditore nella dichiarazione delle caratteristiche, il quale valore dovrà essere peraltro compreso entro limiti dell'articolo 10 paragrafo f).
- peso per litro: chilogrammi 0,03 in più od in meno di quanto indicato dall'articolo 10 del paragrafo b) ultimo capoverso.

Nessuna tolleranza è invece ammessa per i limiti indicati nell'articolo 10 per il tempo di essiccazione, la percentuale di sfere di vetro, il residuo volatile ed il contenuto di pigmento.

2) Caratteristiche generali delle vernici

La vernice da impiegare dovrà essere del tipo rifrangente premiscelato e cioè contenere sfere di vetro mescolato durante il processo di fabbricazione così che dopo l'essicamento e successiva esposizione delle sfere di vetro dovute all'usura dello strato superficiale di vernice stessa sullo spartitraffico svolga effettivamente efficiente funzione di guida nelle ore notturne agli autoveicoli, sotto l'azione della luce dei fari.

Per ottenere valori di retroriflessione RL maggiori di quelli normalmente rilevabili, si può procedere alla post spruzzatura delle perline aventi la stessa granulometria descritta al punto b) seguente.

a) Condizioni di stabilità

Per la vernice bianca il pigmento colorato sarà costituito da biossido di titanio con o senza aggiunta di zinco, per quella gialla da cromato di piombo.

Il liquido pertanto deve essere del tipo oleo-resinoso con parte resinosa sintetica; il fornitore dovrà indicare i solventi e gli essiccanti contenuti nella vernice.

La vernice dovrà essere omogenea, ben macinata e di consistenza liscia ed uniforme, non dovrà fare crosta né diventare gelatinosa od inspessirsi.

La vernice dovrà consentire la miscelazione nel recipiente contenitore senza difficoltà mediante l'uso di una spatola a dimostrare le caratteristiche desiderate, in ogni momento entro sei mesi dalla data di consegna.

La vernice non dovrà assorbire grassi, olii ed altre sostanze tali da causare la formazione di macchie di nessun tipo e la sua composizione chimica dovrà essere tale che, anche durante i mesi estivi, anche se applicata su pavimentazione bituminosa, non dovrà presentare traccia di inquinamento da sostanze bituminose.

Il potere coprente della vernice deve essere compreso tra 1,2 e 1,5 mq/kg. (ASTM D 1738); ed il peso suo specifico non dovrà essere inferiore a Kg. 1,50 per litro a 25° C (ASTM D 1473).

b) Caratteristiche delle sfere di vetro

Le sfere di vetro dovranno essere trasparenti, prive di lattiginosità e di bolle d'aria e, almeno per il 90% del peso totale dovranno avere forma sferica con esclusione di elementi ovali, e non dovranno essere saldate insieme.

L'indice di rifrazione non dovrà essere inferiore ad 1,50 determinato secondo il metodo indicato nella norma UNI 9394-89.

Le sfere non dovranno subire alcuna alterazione all'azione di soluzioni acide saponate a ph 5-5,3 e di soluzione normale di cloruro di calcio e di sodio.

La percentuale in peso delle sfere contenute in ogni chilogrammo di vernice prescelta dovrà essere compresa tra il 30 ed il 40%.

Le sfere di vetro (premiscelato) dovranno soddisfare complessivamente alle seguenti caratteristiche granulometriche:

Setaccio A.S.T.M. % in peso Perline passanti per il setaccio n.70 : 100% Perline passanti per il setaccio n.140 : 15-55% Perline passanti per il setaccio n.230 : 0-10%

c) Idoneità di applicazione

La vernice dovrà essere adatta per essere applicata sulla pavimentazione stradale con le normali macchine spruzzatrici e dovrà produrre una linea consistente e piena della larghezza richiesta. Potrà essere consentita l'aggiunta di piccole quantità di diluente fino al massimo del 4% in peso.

d) Quantità di vernice da impiegare e tempo di essiccamento

La quantità di vernice, applicata a mezzo delle normali macchine spruzzatrici sulla superficie di una pavimentazione bituminosa, in condizioni normali, dovrà essere non inferiore a chilogrammi 0,100 per metro lineare di striscia larga centimetri 12 e di chilogrammi 1,00 per superfici variabili di mq. 1,3 e 1,4.

In conseguenza della diversa regolarità della pavimentazione ed alla temperatura dell'aria tra i 15° C e 40° C e umidità relativa non superiore al 70%, la vernice applicata dovrà asciugarsi sufficientemente entro 30-40 minuti dell'applicazione; trascorso tale periodo di tempo le vernici non dovranno staccarsi, deformarsi o scolorire sotto l'azione delle ruote gommate degli autoveicoli in transito.

Il tempo di essiccamento sarà anche controllato in laboratorio secondo le norme A.S.T.M. D/711-35.

e) Viscosità

La vernice nello stato in cui viene applicata, dovrà avere una consistenza tale da poter essere agevolmente spruzzata con la macchina traccialinee; tale consistenza, misurata allo stormer viscosimiter a 25° C espressa in umidità Krebs sarà compresa tra 70 e 90 (A.S.T.M. D 562).

f) Colore

La vernice dovrà essere conforme al bianco o al giallo richiesto.

La determinazione del colore sarà fatta in laboratorio dopo l'essicamento della stessa per 24 ore.

La vernice non dovrà contenere alcuno elemento colorante organico e non dovrà scolorire al sole. Quella bianca dovrà possedere un fattore di riflessione pari almeno al 75% relativo all'ossido di magnesio, accertata mediante opportuna attrezzatura.

Il colore dovrà conservare nel tempo, dopo l'applicazione, l'accertamento di tali conservazioni che potrà essere richiesto dalla Stazione Appaltante in qualunque tempo prima del collaudo e che potrà determinarsi con opportuni metodi di laboratorio.

g) Veicolo

Il residuo non volatile sarà compreso tra il 65% ed il 75% in peso sia per la vernice bianca che per quella gialla.

h) Contenuto di pigmenti

La pittura dovrà contenere pigmenti inorganici che abbiano una ottima stabilità all'azione dei raggi UV, una elevata resistenza agli agenti atmosferici e una limitata propensione all'assorbimento e alla ritenzione dello sporco.

I pigmenti contenuti nella pittura dovranno essere compresi tra il 35 ed il 45 % in peso (FTMS 141a-4021.1).

i) Contenuto di pigmenti nobili

Il contenuto di biossido di titanio (pittura bianca) non dovrà essere inferiore al 14% in peso e quello cromato di piombo (vernice gialla) non inferiore al 12% in peso.

1) Resistenza ai lubrificanti e carburanti

La pittura dovrà resistere all'azione lubrificante e carburante di ogni tipo e risultare insolubile ed inattaccabile alla loro azione.

m) Prova di rugosità su strada

Le prove di rugosità potranno essere eseguite su strade nuove in un periodo tra il 10° ed il 30° giorno dalla apertura del traffico stradale.

Le misure saranno effettuate con apparecchio Skid Tester ed il coefficiente ottenuto secondo le modalità d'uso previste dal R.D.L. inglese, non dovrà abbassarsi al di sotto del 75% di quello che presenta pavimentazioni non verniciate nelle immediate vicinanze della zona ricoperta con pitture; in ogni caso il valore assoluto non dovrà essere minore di 45 (quarantacinque).

Segnaletica orizzontale in termospruzzato plastico (spray plastic)

- GENERALITÀ

È fatto obbligo all'Impresa realizzatrice di certificare su quali arterie stradali il prodotto da adoperare è stato già applicato e con quale esito, soprattutto per quanto riguarda la durata e la antisdrucciolevolezza in relazione al traffico ed allo spessore dello spruzzato termoplastico.

L'Impresa realizzatrice deve fornire, a sue spese, un certificato emesso dal produttore con il nome ed il tipo del materiale da adoperare, la composizione chimica ed altri elementi che possono essere richiesti dalla Direzione dei Lavori.

Il certificato deve essere autenticato dal rappresentante legale della Società produttrice.

La Direzione dei Lavori si riserva di prelevare campioni di spruzzato termoplastico, prima e dopo la stesura, per farli sottoporre alle prove che riterrà opportune, presso laboratori ufficiali, onde controllare le caratteristiche in precedenza indicate e richieste; le spese relative saranno a carico dell'Impresa realizzatrice.

1) Composizione del materiale

Lo spruzzato termoplastico è costituito da una miscela di aggregati di colore chiaro, microsfere di vetro, pigmenti coloranti e sostanze inerti, legate insieme con resine sintetiche termoplastiche, plastificate con olio minerale.

La composizione del materiale, incluse le microsfere sovraspruzzate, è - in peso - all'incirca la seguente:

aggregati	40%
microsfere di vetro	20%
pigmenti e sostanze inerti	20%
legante (resine e olio)	20%

La proporzione dei vari ingredienti è tale che il prodotto finale, quando viene liquefatto, può essere spruzzato facilmente sulla superficie stradale realizzando una striscia uniforme di buona nitidezza.

Gli aggregati sono costituiti da sabbia bianca silicea, calcite frantumata, silice calcinata, quarzo ed altri aggregati chiari ritenuti idonei.

Le microsfere di vetro devono avere buona trasparenza - per almeno l'80% - ed essere regolari e prive di incrinature; il loro diametro deve essere compreso tra mm. 0,2 e mm. 0,8 (non più del 10% deve superare il setaccio di 420 micron).

Il pigmento colorante è costituito da biossido di titanio (color bianco) oppure da cromato di piombo (color giallo); il primo deve essere in percentuale non inferiore al 10% in peso rispetto al totale della miscela, mentre il secondo deve essere in percentuale non inferiore al 5% e deve possedere una sufficiente stabilità di colore quando viene riscaldato a 200° C.

La sostanza inerte è costituita da carbonato di calcio ricavato dal gesso naturale.

Il contenuto totale dei pigmenti e della sostanza inerte deve essere compreso tra il 18% ed il 22% in peso rispetto al totale della miscela.

Il legante, costituito da resine sintetiche da idrocarburi, plastificate con olio minerale, non deve contenere più del 5% di sostanze acide.

Le resine impiegate dovranno essere di colore chiaro e non devono scurirsi eccessivamente se riscaldate per 16 ore alla temperatura di 150° C.

L'olio minerale usato come plastificante deve essere chiaro e con una viscosità di 0,5 + 35 poise a 25° C e non deve scurirsi eccessivamente se riscaldato per 16 ore alla temperatura di 150° C.

Il contenuto totale del legante deve essere compreso tra il 18% ed il 22% in peso rispetto al totale della miscela.

L'insieme degli aggregati, dei pigmenti e delle sostanze inerti, deve avere il seguente fuso granulometrico (analisi al setaccio):

Percentuale del passante in peso e quantità del prodotto impiegato

	min.	max	
setaccio 3.200 micron	100	-	
setaccio 1.200 micron	85	95	
setaccio 300 micron	40	65	
setaccio 75 micron	25	35	

Il peso specifico dello spruzzato termoplastico a 20° C deve essere circa 2,0 g/cmc.

Lo spessore della pellicola di spruzzato termoplastico deve essere di norma di mm. 1,5 con il corrispondente impiego di circa g/mq 3.500 di prodotto.

La percentuale in peso delle microsfere di vetro rispetto allo spruzzato termoplastico non deve essere inferiore al 12%, cioè a circa g/mq 400.

In aggiunta a quanto sopra, in fase di stesura dello spruzzato termoplastico, sarà effettuata una operazione supplementare di perlinatura a spruzzo sulla superficie della striscia ancora calda, in ragione di circa g/mq 300 di microsfere di vetro.

Il risultato del suddetto impiego di microsfere di vetro dovrà essere tale da garantire che il coefficiente di luminosità abbia un valore non inferiore a 75.

Caratteristiche chimico-fisiche dello spruzzato:

- a) Punto di infiammabilità: superiore a 230° C;
- b) Punto di rammollimento o di rinvenimento: superiore a 80° C;
- c) Peso specifico: a 20 gradi circa 2,0 g/cmc;
- d) Antisdrucciolevolezza: (secondo le prove di aderenza con apparecchio SRT dell'Ente Federale della Circolazione Stradale Tedesca) valore minimo 50 unità SRT;
- e) Resistenza alle escursioni termiche: da sotto 0° a + 80° C:
- f) Resistenza della adesività: con qualsiasi condizione metereologica (temperatura 25° C + 70° C), sotto l'influenza dei gas di scarico ed alla combinazione dei sali con acqua concentrazione fino al 5% sotto l'azione di carichi su ruota fino ad otto tonnellate;
- g) Tempo di essiccazione: (secondo le Norme americane ASTM D711-55 punto 2.4) valore massimo 10";
- h) Resistenza alla corrosione: il materiale deve rimanere inalterato se viene immerso in una soluzione di cloruro di calcio, a forte concentrazione, per un periodo di 4 settimane;
- i) Visibilità notturna: (secondo il metodo di prova delle Norme inglesi "Road Markings, Traffic Signs and Signals Art. 16.01 Traffic Paint and Road Markings" punto 1 e 11/d) il valore minimo del coefficiente deve essere di 75; il coefficiente è uguale a 100 per il carbonato di magnesio in blocco;
- j) l) Resistenza all'usura: (secondo il metodo di prova delle Norme inglesi suddette punto 11/a) la perdita di peso del campione dopo 200 giri delle ruote non deve eccedere g. 0,5;
- k) m) Resistenza alla pressione ad alta temperatura: (secondo il metodo di prova delle Norme inglesi suddette punto 11/b) dopo un'ora il peso di g. 100, dal diametro di mm. 24, non deve essere penetrato nel campione, ma aver lasciato soltanto una leggera impronta;
- l) n) Resistenza all'urto a bassa temperatura: (secondo il metodo di prova delle Norme inglesi suddette punto 11/c) dopo la prova d'urto il campione non deve rompersi, nè incrinarsi, se portato alla temperatura di -1° C.

2) Sistema di applicazione

L'attrezzatura richiesta per effettuare la segnaletica orizzontale con spruzzato termoplastico è costituita da due autocarri, su uno dei quali viene effettuata la pre-fusione del materiale e sull'altro viene trasportata la macchina spruzzatrice, equipaggiata con un compressore capace di produrre un minimo di 2 mc di aria al minuto alla pressione di 7 Kg/cmq.

Un minimo di due pistole spruzzatrici per il termoplastico e due per le microsfere da sovraspruzzare devono essere disponibili ai bordi della macchina, in modo che strisce di larghezza compresa tra cm. 10 e cm. 30 possano essere ottenute con una passata unica e che due strisce continue parallele, oppure una continua ed una tratteggiata possano essere realizzate contemporaneamente.

Le due pistole per spruzzare il termoplastico devono essere scaldate in modo che la fuoruscita del materiale avvenga alla giusta temperatura, onde ottenere una striscia netta, diritta senza incrostazioni o macchie.

Le due pistole per le microsfere dovranno essere sincronizzate in modo tale da poter spruzzare immediatamente, sopra la striscia di termoplastico ancora calda, la quantità di microsfere di vetro indicata nel presente articolo.

La macchina spruzzatrice deve essere fornita di un selezionatore automatico che consenta la realizzazione delle strisce tratteggiate senza premarcatura ed alla normale velocità di applicazione dello spruzzato termoplastico.

Il Cottimista esecutore provvederà anche alle attrezzature adeguate ed alla manodopera specializzata per eseguire la spruzzatura a mano di frecce, scritte, etc.

Lo spruzzato termoplastico sarà applicato alla temperatura di 200° C circa sul manto stradale asciutto ed accuratamente pulito anche da vecchia segnaletica orizzontale.

Lo spessore delle strisce e delle zebrature deve essere di norma di mm. 1,5, mentre lo spessore delle frecce e delle scritte deve essere di norma di mm. 2,5.

La Direzione dei Lavori potrà diminuire gli spessori indicati fino ai limiti qui appresso indicati:

- per le strisce, preferibilmente per la striscia gialla di margine, fino ad un minimo di mm. 1,2;
- per le zebrature fino ad un minimo di mm. 1,2;
- per le frecce e le scritte fino ad un minimo di mm. 2,0.

Segnaletica orizzontale permanente e materiali preformati retrorifrangenti

La segnaletica orizzontale realizzata in preformato retrorifrangente dovrà attenersi alla normativa di cui all'art.40 del D. Lgs n. 285 del 30.04.1992 e del suo regolamento di esecuzione approvato con D.P.R. n. 495 del 16.12.1992, in particolare dall'art. 137 all'art.155 come modificato dal D.P.R. n.610 del 16-9-1996 e s.m.i..

Il materiale in oggetto dovrà essere costituito da un laminato elastoplastico autoadesivo con polimeri di alta qualità, contenente una dispersione di microgranuli ad alto potere antisdrucciolo e di microsfere in vetro "TIPO A" o in ceramica "TIPO B e C" (o equivalente) con caratteristiche in rifrazione tali da conferire al laminato stesso un alto e continuato potere retroriflettente.

Per garantire una buona stabilità del colore ed un ancoraggio ottimale delle microsfere, il prodotto dovrà essere trattato in superficie con una speciale resina.

Il laminato elastoplastico autodesivo potrà essere posto in opera ad incasso su pavimentazioni nuove, nel corso della stesura del manto bituminoso, o su pavimentazioni già esistenti mediante uno speciale "Primer", da applicare solamente sul manto d'asfalto.

Il laminato dovrà inoltre essere in grado di conformarsi perfettamente alla pavimentazione stradale attraverso l'azione del traffico, ed essere, dopo l'applicazione, immediatamente transitabile.

Il laminato potrà essere utilizzato per la realizzazione di segnalamenti orizzontali longitudinali, simboli e iscrizioni di ogni tipologia.

Il materiale dovrà rispondere inoltre ai seguenti requisiti:

TIPO A (fasce di arresto, zebrature, scritte)

- Antisdrucciolo

Il valore iniziale, con materiale bagnato, è di almeno 45 SRT (British Portable Skid Resistance Tester).

- Rifrangenza

I laminati per segnaletica orizzontale dovranno avere i seguenti valori minimi iniziali di retroriflettenza RL espressi in millicandele per metro quadrato per lux di luce incidente (mcd/mq x lux).

COLORE BIANCO

- angolo di osservazione di 4,5°;
- angolo di illuminazione di 3,5°;
- retroriflettenza RL di 300 mcd/mg x lux.

I valori indicati sono del tipo Ecolux ma si potranno adottare anche i requisiti CEN derivanti dalla norma UNI EN 1436, la quale prescrive per:

- angolo di osservazione di 2,29°;
- angolo di illuminazione di 1,24°.

TIPO B (striscie longitudinali)

- Antisdrucciolo

Il valore iniziale, con materiale bagnato, è di almeno 50 SRT (British Portable Skid Resistance Tester).

- Rifrangente

I laminati per segnaletica orizzontale dovranno avere i seguenti valori minimi iniziali di retroriflettenza RL espressi in millicandele per metro quadrato per lux di luce incidente (mcd/mq x lux).

COLORE BIANCO

- angolo di osservazione di 4,5°;
- angolo di illuminazione di 3,5°;
- retroriflettenza RL di 500 mcd/mq x lux.

I valori indicati sono del tipo Ecolux ma si potranno adottare anche i requisiti CEN derivanti dalla norma UNI EN 1436, la quale prescrive per:

- angolo di osservazione di 2,29°;
- angolo di illuminazione di 1,24°.

Per garantire una durata non inferiore a quella prevista dal presente capitolato, le microsfere dovranno essere del tipo resistente alle sollecitazioni di corrosione, graffiatura e frantumazione (tipo ceramica), e dovranno avere un indice di rifrazione superiore a 1,7.

TIPO A e B

L'Impresa aggiudicataria, verificatane l'applicazione secondo le raccomandazioni prescritte, dovrà impegnarsi a garantirne la durata che, in normali condizioni di traffico, dovrà essere non inferiore a 2 anni su tutti i tipi di pavimentazione, ad esclusione porfido, purché si presentino in buono stato di conservazione, con un valore fotometrico per il colore bianco non inferiore a 100 mcd/mq x lux (Tipo A) e 150 mcd/mq x lux (Tipo B).

Qualora il materiale applicato dovesse deteriorarsi prima del termine suddetto, l'Impresa aggiudicataria è tenuta al ripristino della segnaletica orizzontale nelle condizioni prescritte dal presente Capitolato.

TIPO C (striscie longitudinali, scritte e frecce Autostradali)

Il materiale in oggetto dovrà essere costituito da un laminato elastoplastico autoadesivo con polimeri di alta qualità, contenente una dispersione di microgranuli di speciale materiale ad alto potere antisdrucciolo e di microsfere tipo ceramica ad alto indice di rifrazione con caratteristiche tali da conferire al laminato stesso un alto potere retroriflettente.

Il prodotto dovrà presentare un'architettura con elementi in rilievo, in cui le microsfere tipo ceramica o equivalente e le particelle antiscivolo risultano immerse in una resina poliuretanica di altissima resistenza all'usura ed ad alto grado di bianco.

Il presente laminato deve essere utilizzato per la realizzazione di segnalamenti orizzontali longitudinali, simboli e iscrizioni di ogni tipologia.

Il materiale dovrà rispondere inoltre ai seguenti requisiti:

- Rifrangenza

I laminati per segnaletica orizzontale dovranno avere i seguenti valori minimi iniziali di retroriflettenza RL espressi in millicandele per metro quadrato per lux di luce incidente (mcd/mq x lux).

COLORE BIANCO

- angolo di osservazione di 4,5°;
- angolo di illuminazione di 3,5°;
- retroriflettenza RL di 700 mcd/mq x lux.

I valori indicati sono del tipo Ecolux ma si potranno adottare anche i requisiti CEN derivanti dalla norma UNI EN 1436, la quale prescrive per:

- angolo di osservazione di 2,29°;
- angolo di illuminazione di 1,24°.

La particolare configurazione del laminato e lo specifico posizionamento delle microsfere in ceramica o equivalente ad alto indice devono consentire al prodotto stesso un'ottima visibilità notturna anche in condizione di pioggia.

Le microsfere tipo ceramica ancorate alla resina poliuretanica dovranno avere un indice di rifrazione superiore ad 1,7.

Le microsfere in vetro presenti all'interno del prodotto dovranno avere un indice di rifrazione di 1,5.

- Antiscivolosità

Il valore minimo di antiscivolosità dovrà essere di almeno 55 SRT (British Portable SKid Resistance Tester).

L'Impresa aggiudicataria, verificatane l'applicazione secondo le raccomandazioni prescritte, dovrà impegnarsi a garantirne la durata che, in normali condizioni di traffico, dovranno essere non inferiore a 4 anni, nel caso in cui venga applicato a caldo durante la stesura del manto bituminoso e 2 anni su tutti i tipi di pavimentazione, ad esclusione porfido, purchè si presentino in buono stato di conservazione, con un valore fotometrico non inferiore a 150 mcd/mg x lux.

Qualora il materiale applicato dovesse deteriorarsi prima del termine suddetto, la Ditta aggiudicataria è tenuta al ripristino della segnaletica orizzontale nelle condizioni prescritte dal presente Capitolato.

La Ditta produttrice del suddetto materiale (TIPO A,B,C) dovrà essere in possesso del sistema di qualità secondo le norme UNI EN 9000.

GARANZIE SUI PREFORMATI RETRORIFRANGENTI

Ai sensi dell'art. 14 lettera E del D.Lgs 358/2 così come espresso dal D.P.R. 573/94 e della circolare Ministero LL.PP. 16-5-1997 n.2353 per garantire le caratteristiche richieste dal presente Capitolato, dovrà essere presentato:

- certificato attestante che il preformato retrorifrangente è prodotto da Azienda in possesso del sistema di qualità secondo le norme UNI EN 9000 "TIPO A, B e C";
- certificato comprovante la presenza di microsfere tipo ceramica "TIPO B e C" (o equivalente);

- certificato comprovante il valore di rifrangenza "TIPO A, B e C";
- certificato comprovante il valore di antiscivolosità "TIPO A, B e C";

Segnaletica orizzontale temporanea e materiali preformati retrorifrangenti

Il materiale in oggetto sarà costituito da un laminato elastoplastico autoadesivo, rimovibile per utilizzo temporaneo con polimeri di alta qualità, contenente una dispersione di microgranuli di speciale materiale ad elevato potere antisdrucciolo e di microsfere ad alto indice di rifrazione tale da conferire al laminato stesso ottime proprietà retroriflettenti.

La resina poliuretanica, presente nella parte superiore del prodotto, dovrà assicurare un perfetto e durevole ancoraggio delle microsfere e delle particelle antiscivolo.

Il laminato dovrà contenere al suo interno uno speciale tessuto reticolare in poliestere che assicura un'elevata resistenza alla spinta torsionale esercitata dai veicoli, soprattutto, una facile e perfetta rimovibilità del laminato dalla pavimentazione.

Il colore giallo sarà ottenuto utilizzando esclusivamente pigmenti organici.

Detto laminato dovrà risultare quindi sia riciclabile che distruttibile come rifiuto atossico; conforme alle normative europee sull'ambiente, considerato "prodotto non inquinante".

L'adesivo posto sul retro del preformato dovrà permettere una facile e rapida applicazione del prodotto pur garantendone la non alterazione anche sotto elevati volumi di traffico.

Appena applicato, il laminato è immediatamente transitabile.

Il laminato oggetto della presente specifica dovrà avere i seguenti valori minimi iniziali di retroriflettenza RL espressi in millicandele per metro quadrato per lux di luce incidente (mcd/mq x lux):

- retroriflettenza 600 mcd/lux x mq (geometria Ecolux)

- antiscivolosità- spessore55 SRT1,5 mm

I valori indicati sono del tipo Ecolux ma si potranno adottare anche i requisiti CEN derivanti dalla norma UNI EN 1436.

Per il suddetto materiale dovranno essere presentati certificati di antiscivolosità, rifrangenza di cui al presente Capitolato attestanti che il prodotto elastoplastico è prodotto da azienda in possesso del sistema di qualità secondo le norme UNI EN 9000.

Norme generali di valutazione dei lavori e delle forniture

Le quantità dei lavori e delle forniture saranno determinate con metodi geometrici, a numero od a peso, in relazione a quanto previsto nell'Elenco Prezzi.

I lavori saranno liquidati in base alle misure di controllo, rilevate dagli incaricati.

Nel caso che dalle misure di controllo risultassero dimensioni minori di quelle prescritte dalla D.L. sarà in facoltà insindacabile della D.L. ordinare la rimozione della segnaletica e la loro sostituzione a cura e spese del Cottimista.

Le misure saranno eseguite in contraddittorio, mano a mano che si procederà all'esecuzione dei lavori, e riportate su appositi libretti che saranno firmati dagli incaricati della Direzione dei Lavori e dall'Impresa.

Resta sempre salva, in ogni caso, la possibilità di verifica e di rettifica in occasione della visita per la redazione del certificato di regolare esecuzione.

SEGNALETICA VERTICALE

La valutazione della segnaletica verticale sarà effettuata a numero o superficie secondo quanto indicato nei singoli articoli di elenco.

Qualora le targhe di indicazione o di preavviso vengano realizzate mediante composizione di vari pannelli, la valutazione sarà effettuata applicando il relativo prezzo ai singoli pannelli.

Le dimensioni dei cartelli devono essere in ogni caso conformi a quanto prescritto dai regolamenti vigenti.

Nel caso di fornitura non regolamentare, questa non sarà accreditata ed il Cottimista è obbligato a sostituirla con altra regolamentare.

La valutazione dei sostegni sarà effettuata a numero, a metro lineare od a peso secondo quanto indicato nei singoli articoli di elenco.

SEGNALETICA ORIZZONTALE

La valutazione delle striscie longitudinali sarà effettuata a metro lineare in base allo sviluppo effettivo secondo quanto indicato nei singoli articoli di elenco.

La valutazione delle zebrature, linee di arresto e simili sarà effettuata a mq. in base allo sviluppo effettivo della superficie verniciata e secondo quanto indicato nei singoli articoli di elenco.

La valutazione delle scritte a terra sarà effettuata a mq. in base alla superficie, vuoto per pieno, del parallelogramma che circoscrive ciascuna lettera.

Nel caso invece, che dalle prove di rottura risulti una resistenza caratteristica superiore a quella prescritta secondo progetto od ordinata per iscritto dalla Direzione Lavori, non si dara` luogo ad alcuna maggiorazione del prezzo unitario stabilito in elenco.

Nei relativi prezzi di elenco sono compresi in particolare:

- la fornitura a piè d'opera di tutti i materiali necessari (inerti, leganti, acqua, ecc.), la mano d'opera, la cassaforme, le armature di sostegno dei casseri, le attrezzature e macchinari per la confezione, la posa in opera, la vibrazione dei calcestruzzi e quanto altro occorra per dare il lavoro finito a completa regola d'arte.

PROFILATI E MANUFATTI IN ACCIAIO

I manufatti in acciaio, in profilati comuni o speciali, od in getti di fusione, saranno pagati secondo i prezzi di Elenco.

Tali prezzi si intendono comprensivi della fornitura dei materiali, lavorazione secondo i disegni, posa e fissaggio in opera, verniciatura o zincatura a caldo ed ogni altro onere per dare il lavoro compiuto a perfetta regola d'arte.

Qualora i prezzi di elenco di detti manufatti prevedano la valutazione a peso verrà determinato prima della posa in opera mediante pesatura da verbalizzare in contraddittorio.

ELENCO DEI PREZZI UNITARI

Nei prezzi per fornitura di materiali si intendono compensate tutte le spese per dare i segnali a piè d'opera o in magazzini della ditta appaltante compreso ogni onere per imballaggio, carico, trasporto e scarico nonché ogni altra imposta per legge a carico dell'Appaltatore.

Nei prezzi per lavori a misura si intendono compensate tutte le spese per mezzi d'opera, per assicurazioni di ogni genere, tutte le forniture occorrenti, le lavorazioni ed i materiali necessari, nonché le spese generali.

Sono inoltre comprese le spese per l'installazione di eventuale segnaletica di cantiere, nonché eventuale carico dai magazzini della ditta appaltante, trasporto e scarico al luogo di impiego o a deposito.

Art.12 – Gabbioni

Caratteristiche dei materiali

La struttura delle gabbie dovrà essere composta da tondini di acciaio del diametro di 6mm sottoposti ad un alto grado di zincatura a caldo (500gr/m²). I vari componenti dovranno essere sottoposti a galvanizzazione solamente dopo essere stati tagliati, saldati e piegati.

Test di resistenza alla corrosione secondo la normativa DIN EN ISO 1461.

La pietra utilizzata per il riempimento sarà marmo impiegato con un fuso granulometrico di 60-150 mm, ideale per ottenere un'ottima costipazione degli spazi all'interno della gabbia.

Il materiale di riempimento dei gabbioni sarà costituito da pietrame di cava spaccato; in ogni caso le facce esterne dovranno essere eseguite con pietrame di cava di forma parallelepipeda e squadrata, così da risultare sistemate come un muro a secco, ben scagliato in modo da non lasciare vuoti.

Il pietrame di riempimento utilizzati per la costruzione dell'opera dovranno corrispondere ai requisiti essenziali di compattezza, omogeneità e durabilità; dovranno inoltre essere esenti da giunti, fratture e piani di sfalsamento e rispettare i seguenti limiti:

- massa volumica: $\geq 24 \text{ kN/m}^3 (2400 \text{ kgf/m}^3)$ - resistenza alla compressione: $\geq 80 \text{ Mpa} (800 \text{ kgf/cm}^2)$

coefficiente di usura: ≤ 1,5 mm
 coefficiente di imbibizione: ≤ 5%

- gelività: il materiale deve risultare non gelivo

Prove di accettazione e controllo

I gabbioni dovranno rispondere alle prescrizioni della Circolare del Consiglio Superiore dei LL.PP. n. 2078 del 27 agosto 1962.

Prima della messa in opera degli elementi e per ogni partita ricevuta in cantiere, l'Impresa dovrà presentare all'Ufficio di Direzione Lavori il certificato di collaudo a garanzia della Ditta che ha fabbricato i gabbioni, redatto a norma della circolare sopra citata, e corredato dalla certificazione di sistema qualità in conformità alle normative in vigore, ISO-EN 9002.

L'Ufficio di Direzione Lavori dovrà eseguire gli ulteriori accertamenti descritti nel seguito, le cui spese restano sempre a carico dell'Impresa.

Procederà dapprima alla ricognizione dei gabbioni o dei materassi per controllare che lo zinco non presenti sollevamenti o screpolature che ne consentano il distacco con il grattamento: se l'inconveniente si ripeterà per il 10% dei casi esaminati la partita sarà da scartare.

L'Ufficio di Direzione Lavori accerterà altresì il peso complessivo dei gabbioni mediante pesatura a discrezione di campioni significativi, verificando la corrispondenza con le dichiarazioni del fornitore; se il peso risulterà inferiore, la partita sarà scartata.

Le prove relative alla determinazione delle caratteristiche fisiche del pietrame (determinazione del peso specifico, del coefficiente di imbibizione e della gelività) saranno effettuate, a carico dell' Impresa, seguendo quanto riportato al Capo II delle "Norme per l'accettazione delle pietre naturali da costruzione" di cui al R.D. 16 novembre 1939, n.2232; per le prove di resistenza meccanica (resistenza alla compressione e all'usura per attrito radente), si farà riferimento al Capo III della stessa normativa.

L'Impresa dovrà consegnare all'Ufficio di Direzione Lavori i certificati di un laboratorio ufficiale relativi alle prove sopra indicate, che dovranno dimostrare il rispetto dei limiti imposti.

Di tutte le operazioni di controllo, di prelievo e di verifica verranno redatti appositi verbali firmati in contraddittorio con l'Impresa; in mancanza di tali verbali, l'opera non potrà essere collaudata. Resta comunque confermata la facoltà dell'Ufficio di Direzione Lavori di integrare la campagna di prove sopraindicate a propria discrezione in relazione alla tipologia, estesa e importanza dell'opera.

Art.13 - Dispositivo di drenaggio

DISPOSITIVO DI DRENAGGIO

Dispositivo per drenaggio con riempimento plastico a permeabilita certificata, utilizzabile per la captazione e lo smaltimento di acque di falda, anche destinate all'uso alimentare; il prodotto verra posato in opera in modo da ottenere la miglior captazione delle acque presenti nel terreno, in senso verticale/orizzontale, se posto in trincea drenante.

Sul fondo del pannello drenante e alloggiato un tubo corrugato microfessurato con DN 160/137, ogni pannello drenante è dotato di manicotto di giunzione in polipropilene assemblato alla tubazione, per garantire la giunzione tra i tubi tra un modulo e l'altro e la perfetta tenuta idraulica del sistema di drenaggio ed impedire la dispersione nel terreno dell'acqua captata.

Le caratteristiche del prodotto fuori terra dovranno essere le seguenti:

Caratteristiche morfologiche medie

Altezza: 1000 mm Lunghezza: 2000 mm Larghezza: 300 mm

Geotessile di rivestimento laterale

Geotessile filo continuo spunbonded agugliato meccanicamente

Materia prima: polipropilene Peso: tra 125 e 155 g/m2

Spessore (a 2 kPa): tra 1,0 e 1,2 mm

Permeabilita all'acqua (a 2 kPa): 100 l/m2 /s con Δh=50 mm

Diametro effettivo pori: tra 85 e 105 μm Resistenza a trazione: tra 9,5 e 11,5 kN/m Allungamento (long/trasv): 90/75%

Rivestimento in geogriglia plastica sulle testate

Tipologia: rete in HDPE stabilizzato UV Ordito: monofilo 0,285 mm, fili n.8 Trama: monofilo 0,285 mm, fili n.5,5

Peso: circa 96 g/m2

Diametro effettivo pori: sufficiente a trattenere ogni frammento del nucleo drenante ed evitarne

qualsiasi fuoriuscita

Cucitura geotessile/geogriglia sulle testate

Il geotessile di rivestimento laterale dovra essere cucito alle due testate in geogriglia tramite filamento multibava in polietilene e un monofilo in polipropilene, in modo da impedire qualsiasi fuoriuscita del materiale plastico di riempimento e l'eventuale ingresso del terreno all'interno del modulo, dopo la posa.

Nucleo drenante (elementi sciolti sagomati di resina sintetica)

Materia prima: blocchetti di polistirolo espanso certificati "idonei al contatto con sostanze

alimentari", da prove di cessione in applicazione dei D.M. 21.03.1973, D.M. 220 26.04.1993, D.M.

28.10.94 N.735 ART.1 Solvente: acqua distillata

Modalita di prova: contatto per 10 gg a temperatura di 40° C Parametri richiesti: migrazione globale (mg/dm2): < 0,1

Stirene monomero: < 0,02 (metodo EPA 5030B +EPA 8260C 2006)

Il fornitore dovra allegare ad ogni fattura prove di laboratorio qualificato attestanti la conformita dei materiali costituenti il nucleo drenante ai parametri richiesti, eseguite in conformita con le

normative ed ai metodi indicati.

Tubo corrugato microfessurato in hdpe

Diametro: DN 160/137 mm

Alloggiato nella parte inferiore del pannello drenante

Lunghezza: 2 000 mm

Manicotto in polipropilene per tubo drenaggio microfessurato 160/137

Raccordo di giunzione fra tubazione al fondo

Materiale: polipropilene Diametro esterno: 160 mm

PRESTAZIONI IDRAULICHE* DEL MODULO DRENANTE

Gradiente idraulico (Δh/L)	0.009	0.02	0,037	0,060	0,092	0,141
Q (m ³ /s)	6 x 10 ⁻³	12 x 10 ⁻³	19 x 10 ⁻³	23 x 10 ⁻³	33 x 10 ⁻³	40 x 10 ⁻³

^{*}estrapolate da prove su modulo con dimensioni $0.3 \times 0.5 \times 1$, eseguite con battente idraulico costante H=320 mm in canaletta lunga 12 m